Torsion
Torque

- Def: Moment along an axle or shaft
- Equilibrium: Torque out = Torque in
Plane sections remain planar in torsion.

- Before deformation (a):
 - Circles remain circular.
 - Radial lines remain straight.

- After deformation:
 - Longitudinal lines become twisted.

Diagram shows a cylinder before and after deformation, illustrating the changes in circular and straight lines due to torsion.
Side view of a twisted shaft

BEFORE

AFTER TORSION APPLIED
The angle of twist $\phi(x)$ increases as x increases.
Shear stress is linear with radius
Fundamental Equations

\[\tau = G \gamma \]

\[\tau = \frac{Tr}{J} \]

\[\theta = \frac{Tl}{JG} \]
Low Stress at center of shaft is why many shafts are hollow

Shear stress varies linearly along each radial line of the cross section.
The gears attached to the fixed-end steel shaft are subjected to the torques shown in Fig. 10–18a. If the shear modulus of elasticity is 80 GPa and the shaft has a diameter of 14 mm, determine the displacement of the tooth \(P \) on gear \(A \). The shaft turns freely within the bearing at \(B \).

SOLUTION

Internal Torque. By inspection, the torques in segments \(AC, CD, \) and \(DE \) are different yet constant throughout each segment. Free-body diagrams of appropriate segments of the shaft along with the calculated internal torques are shown in Fig. 10–18b. Using the right-hand rule and the established sign convention that positive torque is directed away from the sectioned end of the shaft, we have

\[
T_{AC} = +150 \text{ N} \cdot \text{m} \quad T_{CD} = -130 \text{ N} \cdot \text{m} \quad T_{DE} = -170 \text{ N} \cdot \text{m}
\]

These results are also shown on the torque diagram, Fig. 10–18c.
Angle of Twist. The polar moment of inertia for the shaft is

\[J = \frac{\pi}{2} (0.007 \text{ m})^4 = 3.771 \times 10^{-9} \text{ m}^4 \]

Applying Eq. 10–16 to each segment and adding the results algebraically, we have

\[
\phi_A = \sum \frac{TL}{JG} = \frac{(+150 \text{ N} \cdot \text{m})(0.4 \text{ m})}{3.771 \times 10^{-9} \text{ m}^4 [80(10^9) \text{ N/m}^2]} + \frac{(-130 \text{ N} \cdot \text{m})(0.3 \text{ m})}{3.771 \times 10^{-9} \text{ m}^4 [80(10^9) \text{ N/m}^2]} \]
\[+ \frac{(-170 \text{ N} \cdot \text{m})(0.5 \text{ m})}{3.771 \times 10^{-9} \text{ m}^4 [80(10^9) \text{ N/m}^2]} = -0.2121 \text{ rad} \]

Since the answer is negative, by the right-hand rule the thumb is directed toward the end E of the shaft, and therefore gear A will rotate as shown in Fig. 10–18d.

The displacement of tooth P on gear A is

\[s_P = \phi_A r = (0.2121 \text{ rad})(100 \text{ mm}) = 21.2 \text{ mm} \quad \text{Ans.} \]

NOTE: Remember that this analysis is valid only if the shear stress does not exceed the proportional limit of the material.
END