Engineering Standards
What They are,
Where & Why They’re Used

Dr. Hodge Jenkins
Some Definitions:

Standard: A standard is a document that defines the characteristics of a product, process or service, such as dimensions, safety aspects, and performance requirements.

Code: Laws or regulations that specify minimum standards to protect public safety and health such as codes for construction of buildings. Voluntary standards are incorporated into building codes.

Specification: A set of conditions and requirements of precise and limited application that provide a detailed description of a procedure, process, material, product, or service for use primarily in procurement and manufacturing. Standards may be referenced or included in specifications.

Technical Regulation: A mandatory government requirement that defines the characteristics and/or the performance requirements of a product, service or process (see also Regulation).
Why Standards and Codes?

• **Standardization**
 – Parts from different vendors fit together
 – Common design specs
 – Consistent quality
 – e.g., Pipe wall thickness, schedule 40
 – Wire sizes, nail sizes, bolt sizes

• **Safety & Legal Enforcement of Safety**
 – Building safety, fire prevention/protection
 – Individual & Public Safety
 – e.g., Safe drinking water, safe nuclear plants
Standards needed for function

- **Functional Based**
 - 110V /60Hz or 220V/50Hz
 - Piping (Schedule 40, 50, ...)

- **Professional Society Based**
 - ANSI & ASME (Boiler & Pressure Vessel Code)
 - IEEE communication standards
Parts Standardization

• Every mass produced product usually has a standard
• IEEE has many, many standards for electronics
• DIN, ISO, ANSI for size, shapes, etc.
• US ANSI pipe standards
 – Diameters
 – Thickness
 – Materials
 – Flange bolt patterns
It’s the law

• Legal Requirements US & Internationally
 • UL listed, CSA
 • ANSI, JIS, ISO, DIN

• EPA, USNRC
 – Code of Federal Regulations (CFR)

• Building codes, National Electrical Code, etc.
Some Background:

- The U.S. federal government is the largest single creator & user of standards: more than 45,000 (by current estimates)!
- About 210 organizations are designated Standard Development Organizations (SDO’s)
- Most Standards (about 90%) come from about 20 of these SDO’s
- ASTM, ASME, IEEE, AISI (ASM), ASCE, MilStd (Mil Specs), are some of the most important SDO’s
Who makes Standards and Codes?

- AIA Aerospace Industries Association of America
- AAI Aluminum Association, Inc
- AASHTO American Association of State Highway and Transportation Officials
- ACI American Concrete Institute
- AISC American Institute of Steel Construction
- AISI American Iron and Steel Institute
- ANSI American National Standards Institute
- ASCE American Society of Civil Engineers
- ASME American Society of Mechanical Engineers
- ASTM American Society for Testing and Materials
- AISE Association of Iron and Steel Engineers
- BOCA Building Officials and Code Administrators
- FAA Federal Aviation Administration
- ISO International Organization for Standardization
- MIL SPEC United States Military
- NIST National Institute of Standards and Technology
- OSHA Occupational Safety and Health Administration
- SAE Society of Automotive Engineers
- Professional Societies and Government
Taking them Global!

- **ANSI** and (U.S. National Committee (**USNC**)) are the U.S. clearing house for Standards and a founding member of **ISO**!

- Internationally there are Standards Organizations in every major Industrial Nation and several Umbrella Groups:
 - International Organization for Standardization (ISO)
 - International Electrotechnical Commission (IEC)
 - International Telecommunication Union (ITU)
How they’re used:

- Standards are a “COMMUNICATION” tool that allows all users to speak the same language about products or processes.
- They provide a “Legal,” or at least enforceable, means to evaluate acceptability & sale-ability of products and/or services.
- They can be taught and applied globally!
- They, ultimately, are designed to protect the public from questionable designs, products and practices.
- Thus they fall (in engineering terms) into the “MOM AND APPLE PIE” area of our profession!
- They teach us, as engineers, how we can best meet environmental, health, safety and societal responsibilities.
How did standards develop?

• **Selection from competing technologies**
 – Westinghouse AC power, Edison DC power
 – Communications standards
 – Military requirements (Civil War)

• **Failures**
 – ASME Boiler & PV Code (Boston Molasses Disaster, aka the Great Molasses Flood of 1919)
 – Building fire codes
 – Tacoma Narrow Bridge failure
 – World Trade Center bombing
 – ...

...
Common, Everyday Standards

- Fasteners (#10-24 UNC bolt, M8 bolt)
- Plumbing sizes (Sch. 30, 40,..)
- Lumber sizes (2x4...not the real dimensions)
- Electrical Wire sizes (12, 14, 16 Gauge)
- Electrical service 110 VAC, 60 Hz
- Air pollution controls: Car Inspections
- Building Codes
Standards I have used professionally

• Westinghouse Nuclear
 – ASME B&PV Code
 – US CFR & TR Laws

• USPS R&D
 – ANSI
 • Drafting standards
 • Component specs

• Fisher Scientific
 – UL & CSA
 • Appliance design: ovens, centrifuges

• Molytek, Inc., Lucent
 – ISO, DIN, JIS
 – Process & Product
The National Institute of Standards and Technology (NIST), an agency of the U.S. Department of Commerce, conducted a three-year building and fire safety investigation to study the factors contributing to the collapse of the WTC Towers.

September 11, 2001, was not the first time that tragedy helped to identify the need for standards. More than a century ago, a great fire ravaged Baltimore, Maryland, for more than 30 hours in early 1904.

The fire was reported first at the John Hurst and Company building at 10:48 a.m. on Sunday morning, February 7, and quickly spread. By 1:30 p.m., units from surrounding communities were arriving. To halt the fire, officials tried to use a firewall, then dynamited buildings around the existing fire. These tactics, however, were unsuccessful and the fire continued until late afternoon on Mon., February 8. More than 1,231 firefighters were required to bring the blaze under control. One reason for the fire's duration was the lack of national standards in fire-fighting equipment. Although fire engines from Wilmington and Washington, DC, and cities as far away as Philadelphia, Atlantic City, and New York City responded, many were useless because their hose couplings failed to fit Baltimore hydrants. As a result, the fire burned over 30 hours, destroying 1,526 buildings spanning 70 city blocks. The National Fire Protection Association, which had been established in 1896 after a number of disastrous large-scale fires, then set about to develop uniform sprinkler systems and standard hose couplings.
Engineering Standards

IHS is a leading provider of technical standards, codes, specifications, Government/military standards and specifications, and related documents. IHS offers documents from more than 370 technical societies around the world.

Standards can be purchased individually or you can subscribe to a collection of documents. Other Delivery Methods include DVD, XML, and Private Extract.

Standards Developing Organizations

AA - Aluminum Association
AAMI - Association for the Advancement of Medical Instrumentation
AASHTO - American Association of State Highway and Transportation Officials
AATCC - American Assoc of Textile Chemists and Colorists
ABMA - American Bearing Manufacturers Association
ABS - American Bureau of Shipping
ACI - American Concrete Institute
ADA - Americans with Disabilities Act
AEC - AEC Construction Standards
AECMA - European Association of Aerospace Industries
AGA - American Gas Association
AGMA - American Gear Manufacturers Association
AIA-NAS - Aerospace Industries Association/National Aerospace Standards
AIA - American Institute of Aeronautics and Astronautics
AIM - Association for Information and Image Management
AMIT - The Association For Manufacturing Technology
ANS - American Nuclear Society
ANSI - American National Standards Institute
API - American Petroleum Institute
ARINC - Aeronautical Radio, Inc
ARMY - Army Regulations and Pamphlets
ASABE - American Society of Agricultural and Biological Engineers
ASHRAE - American Society of Heating, Refrigerating, and Air-conditioning Engineers
ASME - American Society of Mechanical Engineers
ASQ - American Society for Quality

Standards Applications & Collections

IHS Standards Expert™
IHS Custom Collections
IHS Reference Linking Solutions
IHS Medical Devices Standards Collections
IHS intraSpex
EEEC - Electrical and Electronics Equipment Compliance Solution

Request More Information

Click below to request more information on engineering standards

Quote Request

Standards Resources

How Standards are Used Across Disciplines

How IHS Manages 1 Million Standards Documents

10 Reasons to Use the IHS Specs & Standards Service

Standards and the Design Engineer

Increase Compliance and Use — Take Your Standards Library to the Internet

Successfully Sourcing Materials Requires Critical Information
American National Standards Institute: An Introduction!

Throughout its history, ANSI has maintained as its primary goal the enhancement of global competitiveness of U.S. business and the American quality of life by promoting and facilitating voluntary consensus standards and conformity assessment systems and promoting their integrity. The Institute represents the interests of its nearly 1,000 company, organization, government agency, institutional and international members through its office in New York City, and its headquarters in Washington, D.C.

National Standardization

ANSI facilitates the development of American National Standards (ANS) by acceding the procedures of standards developing organizations (SDOs). These groups work cooperatively to develop voluntary national consensus standards. Accreditation by ANSI signifies that the procedures used by the standards body in connection with the development of American National Standards meet the Institute’s essential requirements for openness, balance, consensus and due process.

ANSI is often asked about the total number of standards (and standards setting bodies) in the United States. It is estimated that in the U.S. today there are hundreds of “traditional” standards developing organizations— with the 20 largest SDOs producing 90% of the standards— and hundreds more “non-traditional” standards development bodies, such as consortia. This means that the level of U.S. participation is quite extensive as the groups themselves are comprised of individual committees made up of experts addressing the technical requirements of standards within their specific area of expertise.

At year end 2006, about 200 of these standards developers were accredited by ANSI; there were more than 10,000 American National Standards (ANS).

In order to maintain ANSI accreditation, standards developers are required to consistently adhere to a set of requirements or procedures known as the “ANSI Essential Requirements,” that govern the consensus development process. Due process is the key to ensuring that ANSI is developed in an environment that is equitable, accessible and responsive to the requirements of various stakeholders. The open and fair ANSI process ensures that all interested and affected parties have an opportunity to participate in a standard’s development. It also serves and protects the public interest since standards developers accredited by ANSI must meet the Institute’s requirements for openness, balance, consensus and other due process safeguards.

That is why American National Standards are usually referred to as “open” standards. In this sense, “open” refers to a process used by a recognized body for developing and approving a standard. The Institute’s definition of openness has many elements, but basically refers to a collaborative, balanced and consensus-based approval process. The content of these standards may relate to products, processes, services, systems or personnel.
Learning About Them

Why Standards Matter
ANSI’s first introductory level e-learning course is for those who may not be familiar with standards, ANSI or the U.S. voluntary standards and conformity assessment systems.

• U.S. Standards – Today and Tomorrow
This course focuses on the U.S. national standards systems and is an intermediate-level course that supplements basic standards education. It provides more in-depth knowledge about the development, role and impact of domestic standards on government, business, trade and professional associations, and includes a module for university faculty and students. The courses on this website complement ANSI’s instructor-led education and training courses.
The Impact of Standards on Business and Industry

• Roughly 80% of global merchandise trade is affected by standards and by regulations that embody standards

• Standards and conformity assessment programs play a key role in the transfer of technology, from the research and development stage, to production, and ultimately to a product's success in the marketplace.

• Strategic utilization of these Standards can simplify product development, reduce unnecessary duplication, lower costs, increase productivity, ensure safety, permit interchangeability, compatibility, and interoperability, enhance the acceptance of new products, maintain uniformity in product quality and much more.

• Industry participation in the standards development process is essential
Standards in the news:

- **ISO 9000** – a quality standard used by business to say “We are QUALITY” (in US this has evolved into Q9001 as ‘nationalized’ by AQS)
- **UL** rating – used as an “international” safety rating (hence Standard)
- **ISO 14000** – the international Environmental Management Guideline (standard) – and hence the ‘de-facto’ product life cycle and sustainability standard for business, industry, and Engineering Design
- **ANSI/ASME Y14.1 and Y14.5** – international drafting standards for engineering drawings
- Even Clothes sizes are controlled by International Standards!
Building Codes are like Standards too (but are legally binding):

Notice: Effective Immediately

The Building Department will not accept incomplete applications. Please carefully review submittal requirements in the permit packet and checklist.

Notice: New Codes Effective January 1, 2014

The following eight Georgia State Minimum Standard Codes will be effective January 1, 2014:

- International Building Code
- International Residential Code
- International Plumbing Code
- International Mechanical Code
- International Fuel Gas Code
- International Energy Conservation Code
- International Fire Code
- National Electrical Code
ASTM E2248, ASTM E2298 Detail Charpy Impact Tests

June 13, 2009 // Published as a news service by IHS

"Conventional noninstrumented Charpy tests give useful comparative information but generally do not offer any detailed insight into the failure mechanisms or provide quantifiable material properties," said Enrico Lucon, senior researcher, Institute of Nuclear Material Science at the Belgian Nuclear Research Center.

"Particularly for structural integrity evaluations, using instrumented Charpy impact test data can improve the understanding of failure mechanisms at high loading rates," said Lucon. "On the other hand, in the case of thin-walled structures or for optimizing material consumption, miniature Charpy specimens may represent an attractive option."

Lucon said instrumenting the machine striker to measure and record the force on the notched sample during impact, as described in ASTM E2298, gives a clearer picture of the events occurring, providing additional insight into the behavior of material under impact loading.

Testing procedures described in ASTM E2248 will be helpful for users who need to reduce the size of Charpy specimens either because the investigated component is thin or because the available material is limited in quantity.

Source: ASTM International.
Where they may Play into your Projects, Examples:
(drafting Standard)

found using a search engine available at ANSI with URL:
http://www.nssn.org/search/IntelSearch.aspx
And Internationally ISO 1101 Geometric Dimension and Tolerancing Standard

<table>
<thead>
<tr>
<th>Document #</th>
<th>Title</th>
<th>Developer</th>
<th>Ordering Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 1101/DAm1</td>
<td>Representation of specifications in the form of a 3D model</td>
<td>ISO</td>
<td>Phone: Development Project: No document available.</td>
</tr>
<tr>
<td>ISO 1101/NP Amd2</td>
<td>Indication of special specification operators for form, orientation, location and run-out</td>
<td>ISO</td>
<td>Phone: Development Project: No document available.</td>
</tr>
<tr>
<td>ISO 1101:2004</td>
<td>Geometrical Product Specifications (GPS) -- Geometrical tolerancing -- Tolerances of form, orientation, location and run-out</td>
<td>ISO</td>
<td>ANSI ESS</td>
</tr>
<tr>
<td>ISO 11012:2009</td>
<td>Heavy commercial vehicles and buses - Open-loop test methods for the quantification of on-centre handling - Weave test and transition test</td>
<td>ISO</td>
<td>ANSI ESS</td>
</tr>
<tr>
<td>ISO 11014:2009</td>
<td>Safety data sheet for chemical products - Content and order of sections</td>
<td>ISO</td>
<td>ANSI ESS</td>
</tr>
<tr>
<td>ISO 11016:1999</td>
<td>Oil of star anise, Chinese type (Illicium verum Hook. f.)</td>
<td>ISO</td>
<td>ANSI ESS</td>
</tr>
<tr>
<td>ISO 11019:1998</td>
<td>Oil of roots of lovage (Lavandula officinalis Koch)</td>
<td>ISO</td>
<td>ANSI ESS</td>
</tr>
<tr>
<td>EN ISO 1101</td>
<td>Geometrical Product Specifications (GPS) - Geometrical tolerancing - Tolerances of form, orientation, location and run-out</td>
<td>CEN</td>
<td>Buy from hardcopy resellers</td>
</tr>
</tbody>
</table>
NSSN Has Advanced Search Capabilities to find standards that may be relevant to your project:
Advanced Search is Thorough – Try it for your project!

<table>
<thead>
<tr>
<th>Document #</th>
<th>Title</th>
<th>Developer</th>
<th>Ordering Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM A1048/A1048M-06</td>
<td>Standard Specification for Pressure Vessel Forgings, Alloy Steel, Higher Strength Chromium-Molybdenum-Tungsten for Elevated Temperature Service</td>
<td>ASTM</td>
<td>ANSI ESS</td>
</tr>
</tbody>
</table>
This is a 20 page introduction to standards available from ASME (for students)
http://www.astm.org
Many Quality Standards

The American version of the update replaces ANSI/ISO/ASQ Q9001-2000. You will have two years from the date of release to certify to the new revision.

Purchase the ANSI/ISO/ASQ Q9001-2008 e-standard!

Order the print version of ANSI/ISO/ASQ Q9001-2008.

RESOURCES

ISO 9001:2008 Related Products
Sign up to be notified when updated ISO 9001:2008 products are available.

Knowledge Center - ISO 9001:2008
Get the latest articles on ISO 9001:2008 recertification. Access articles from ASQ’s archives relevant to any ISO 9001 implementation - new or existing. Find out what you need to do, and how to get started!
And Thinking Forward: ISO 140xx series of Environmental Standards:

Life cycle assessment

From Wikipedia, the free encyclopedia

“Cradle-to-grave” redirects here. For other uses, see Cradle to the Grave (disambiguation).

A Life Cycle Assessment (LCA, also known as ‘life cycle analysis’, ‘ecobalance’, and ‘cradle-to-grave analysis’) is the investigation and evaluation of the environmental impacts of a given product or service caused or necessitated by its existence.

Contents

1 Goals and purpose of LCA
2 Four main phases
 2.1 Goal and scope
 2.2 Life cycle inventory
 2.3 Life cycle impact assessment
 2.4 Interpretation
3 LCA uses and tools
4 Variants
 4.1 Cradle-to-grave
 4.2 Cradle-to-gate
 4.3 Cradle to cradle
 4.4 Gate-to-gate
 4.5 Well-to-wheel
 4.6 Economic Input-Output Life Cycle Assessment
5 Life cycle energy analysis
 5.1 Energy production
 5.2 LCEA criticism
6 Critiques
7 See also
8 References
9 Further reading
10 External links

‘CRADLE –TO-GRAVE’
Thinking for an Engineer

Goals and purpose of LCA

The goal of LCA is to compare the full range of environmental and social damages assignable to products and services, to be able to choose the least burdensome one. At present it is a way to account for the effects of the cascade of technologies responsible for goods and services. It is limited to that, though, because the similar cascade of impacts from the commerce responsible for goods and services is unaccountable because what people do with money is unrecorded. As a consequence LCA succeeds in accurately measuring the impacts of the technology used for delivering products, but not the whole impact of making the economic choice of using it.

The term ‘life cycle’ refers to the notion that a fair, holistic assessment requires the assessment of raw material production, manufacture, distribution, use and disposal including all intervening transportation steps necessary or caused by the product’s existence. The sum of all those steps - or phases - is the life cycle of the product. The concept also can be used to optimize the environmental performance of a single product (ecodesign) or to optimize the environmental performance of a company.
Lest we also forget: Ethics in Engineering!

Search for Standards

Ethical

Find Title, Abstract or Keyword

- **FIND TITLE, ABSTRACT OR KEYWORD**
- **FIND DOCUMENT NUMBER**

Search Results

<table>
<thead>
<tr>
<th>Document #</th>
<th>Title</th>
<th>Developer</th>
<th>Ordering Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM E2065-05</td>
<td>Standard Guide for Ethical Requirements for Psychophysiological Detection of Deception (PED) Examiners</td>
<td>ASTM</td>
<td>Buy Now</td>
</tr>
<tr>
<td>ASTM E2147-01</td>
<td>Standard Specification for Audit and Disclosure Logs for Use in Health Information Systems</td>
<td>ASTM</td>
<td>Buy Now</td>
</tr>
<tr>
<td>ASTM F743-04</td>
<td>Standard Practice for Selecting Generic Biological Test Methods for Materials and Devices</td>
<td>ASTM</td>
<td>Buy Now</td>
</tr>
<tr>
<td>NIOSH-A</td>
<td>Studies to Evaluate Patient Outcomes; Approved Guideline</td>
<td>CLSI</td>
<td>Buy Now</td>
</tr>
<tr>
<td>AS 3805-2006</td>
<td>Compliance programs (FOREIGN STANDARD)</td>
<td>SAI</td>
<td>Buy Now</td>
</tr>
</tbody>
</table>
Search for Standards

<table>
<thead>
<tr>
<th>Document #</th>
<th>Title</th>
<th>Developer</th>
<th>Ordering Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANSI Z125.1-2000</td>
<td>Hazardous Industrial Chemicals - Precautionary Labeling</td>
<td>ACC</td>
<td>Buy Now</td>
</tr>
<tr>
<td>IEC 60364-7-710 Ed. 1.0 b:2002</td>
<td>Electrical installations of buildings - Part 7-710: Requirements for special installations or locations - Medical locations</td>
<td>IEC</td>
<td>Buy Now</td>
</tr>
<tr>
<td>IEC 60896 Ed. 2.0 b:2005</td>
<td>Specifications for unused silicone insulating liquids for electrotechnical purposes</td>
<td>IEC</td>
<td>Buy Now</td>
</tr>
<tr>
<td>IEC 61000-6-6 Ed. 1.0 b:2003</td>
<td>Electromagnetic compatibility (EMC) - Part 6-6: Generic standards - HEMP immunity for indoor equipment</td>
<td>IEC</td>
<td>Buy Now</td>
</tr>
<tr>
<td>IEC/TS 61436 Ed. 1.0 b:1996</td>
<td>Possible safety and health hazards in the use of alkaline secondary cells and batteries - Guide to equipment manufacturers and users</td>
<td>IEC</td>
<td>Buy Now</td>
</tr>
<tr>
<td>ISO 13344:2004</td>
<td>Estimation of the lethal toxic potency of fire effluents</td>
<td>ISO</td>
<td>Buy Now</td>
</tr>
</tbody>
</table>
Finally:

• There’s plenty here to consider – but it’s part of the professional engineering job!
• Make Standards part of your Life-long Learning process – check often for changes as they will effect your products and processes as an engineer or manager
• Find out what is appropriate for your project/product
 – Include appropriate Standards a part of your specification
• As a test case, Each team **MUST** include a section in their team’s **PDR Document** (brief but relatively through) on applicable standards and specifications applicable to their project
 • *Which standards are applicable*
 • *How they were used*