

Project Specifications

- Developed from project description and requirements
- Define project goals
- Types of
 - Design (performance)
 - Construction
 - Model or Prototype
 - Manufacturing

Project Specifications

Design (performance) Specifications

- Measurable statement of the objectives that a design must achieve.
- Developed early in the design process
- Requires input from:
 - potential clients, marketing personnel,
 - investors, manufacturing specialists,
 - legal experts, management, etc.

Project Specifications

Construction (detailed) Specifications

- After a decision has been made to proceed with the build and test phase
- Written and visual communications
- Prescribe construction details
 - Location,
 - Size,
 - Tolerances,
 - Material Type,
 - Surface Finishes, etc.

Project Specifications Construction (detailed) Specification, cont'd

- Manufacturing phase:
 - After the build and test phase is complete
 - Further expansion of detailed specifications
 - Assembly Techniques,
 - Packaging,
 - Shipping Instructions, etc.

Design Criteria

- Developed from specifications to
 - Ensure compliance with client's requirements
 - Discriminate between designs
 - Identify a 'best' design
- Two Types
 - Feasibility Criteria
 Eliminate infeasible designs
 - Merit Criteria
 Identify characteristics of 'best' designs

Design Criteria

Feasibility Criteria

- Factors that limit the scope of a project
- Normally expressed as constraints
 - unit must weigh less than 100 lbs.
 - unit must accelerate to a velocity of 60 mph in less than 10 seconds.
- Go / No-Go Criteria
 - (Feasible / Not-Feasible)
- Project Specifications are a primary source

Design Criteria

Merit Criteria

- Factors that promote <u>discrimination</u> <u>between FEASIBLE</u> design alternatives.
- Provides a logical method for selecting the "best" design
- Should be presented in a form which will facilitate the decision making process

Design Criteria Merit Criteria

- Specific while still providing a basis for choosing between alternatives
- Examples include:
 - low unit production cost, low shipping cost, low storage cost, etc.
 - high acceleration, high velocity, high efficiency, etc.
- Project Specifications are good starting point
- Ask: What is the overall project goal?

Design Criteria Example Project: <u>Toothpick Bridge</u>

- Design Specifications (handout):
- Feasibility Criteria (engineer):
- Merit Criteria (engineer):

Feasibility Analysis

- Eliminate some of the design concepts
- Reveal ways that other alternatives may overcome their limitations
- Produces at least two feasible alternatives – In practice, this will not always occur
 - <u>In this class, it must!!</u>
 Your project grade depends on it.
- A single table comparing each design to the
- feasibility criteria with pass/fail ($\sqrt{\text{ or X}}$) notation is a common approach
 - Good visual of why designs are succeeding of failing

Merit Analysis

Structured way to make a logical, documentable decision concerning the <u>"best" design alternative</u>

- It is not a "foolproof" way of selecting the best design.
- Also applies to problem solution, manufacturing process, product supplier, etc.

Merit Analysis, cont'd

- Provides a point of departure for engaging in intelligent debate over design decisions
- Shows why one of the alternatives was selected over the others
- Provides basis for retracing the steps that led to the decision
- Better than simply declaring victory based on some sort of "gut feeling"

Merit Analysis Steps

- 1. Criteria Importance
- 2. Develop Merit Curves
- 3. Merit Factor Assignment
 - 4. Calculation Step One
 - 5. Calculation Step Two

1. Criteria Importance

Points
40
30
15
10
5
100

4. Calculation Step One

- Calculate merit associated with each criteria for each design
- criteria merit = (weight) x (merit factor)

5. Calculation Step Two

- Calculate total merit associated with each design
- Total merit = Σ (merit criteria)

Making a Decision

- Discuss the scoring of the designs and consider:
 - What would a 'perfect' design score?
 - How different are the numbers?
 - Which merit criterion are making the biggest difference?
 - Is one merit criterion driving the decision?
 - Can the merit criterion, weighting, curves, etc. be improved?

		Exa	amj	ple		
1 1			1		Alternative #*	1
Merit	Criteria V	Veight (%)		Feature Attribute	Merit factor	Total Mer
Func	tionality	40		7	7	280
Prod	uction cost	30		\$1000/unit	6	180
Oper	ating cost	15		\$2.00/hr	6	90
System weight Aesthetics		10		60 lbs	6	60
		5		10	3	15
	Total	100	Γ			625
Alternative #2					Alternative #3	
Feature	Merit factor	Total Merit		Feature	Merit factor	Total Mer
Attribute				Attribute		1
9	9	360		8	8	320
\$500/unit	8	240		\$750/unit	7	210
\$4.00/hr	2	30		\$3.00/hr	4	60
70 lbs	2	20		50 lbs	10	100
50	7	35		25	5	25
	1	685				715

