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Abstract: In a recent paper by Hodgson et al. (2000) a procedure is presented for solving the job 

shop scheduling problem of minimizing Lmax.  Their iterative-adaptive simulation-based procedure is 

shown to perform well on large-scale problems.  However, there is potential for improvement in closing 

the gap between best known solutions and the lower bound.  In this paper, a simulated annealing post 

processing procedure is presented and evaluated on large-scale problems.  A new neighborhood 

structure for local searches in the job shop scheduling problem is developed.  The procedure is also 

evaluated using benchmark problems and new upper bounds are established.   

1. Introduction 

Consider the classic job shop scheduling problem.  A set of jobs is to be processed on a set of 

machines without preemption.  Each job has a given technological route, i.e., a specified sequence of 

operations and required processing times on the machines.  All jobs are ready at time 0, and due dates 

are given for each job i (di).  A job can only be processed on one machine at a time, and a machine can 

only process one job at a time.  A job's lateness is its completion time minus its due date (Ci - di).  The 

objective is to sequence the operations on the machines in order to minimize the maximum lateness over 

all jobs ( }]{maxmin[ iii
dC − ).  Using the Graham, et al. (1979) scheduling notation, this problem is 

referred to as J//Lmax. 

The problem was first introduced by Muth and Thompson (1963).  Since then, job shop 

scheduling has been a standard topic in scheduling textbooks (e.g. see Baker, 1974 and Morton and 

Pentico, 1993).  Rinnooy Kan (1976) proved that the job shop problem with the makespan objective is 

NP-Hard.  Furthermore, other authors (see e.g. Adams et al., 1988 and Werner and Winkler, 1995) 

indicate that not only is the job shop problem NP-Hard, it is one of the worst NP-hard problems.  One 

classical 10x10 job shop problem formulated by Muth and Thompson (1963) was not solved until 

Carlier and Pinson (1989). 

Van Laarhoven, et al. (1992) and Matsuo, et al. (1998) used simulated annealing to solve job 

shop problems with the makespan objective.  They compared their simulated annealing approach to 

three other job shop scheduling heuristics and found superior or equivalent results for most problems.  

However, the procedure requires significant computational effort. 
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Dell’Amico and Trubian (1993), Nowicki and Smutnicki (1996), and Pezzella and Merelli 

(2000) use various Tabu search heuristics finding optimal or near-optimal solutions on numerous 

benchmark problems. 

Demirkol, et al. (1998) established a series of benchmark problems with the intent that 

researchers could use them to evaluate the effectiveness of their algorithms.  For the J//Lmax problem, 

they posted 160 problems including the best known solutions (upper bounds) along with solution times.  

Balas, et al. (1998) utilized a shifting bottleneck strategy combined with a guided local search 

procedure to obtain significant improvement in the upper bounds originally posted.  The guided local 

search procedure searches through a neighborhood tree structure to overcome local optima.  To the 

best of our knowledge, the solutions found by Balas, et al. (1998) are the current best known solutions 

to the benchmark problems. 

Hodgson, et al. (1998) presented a procedure (referred to as the Virtual Factory) for efficiently 

and effectively solving industrial-size job shop scheduling problem with the objective of minimizing 

maximum lateness, J//Lmax.  They presented results for an iterative adaptive simulation-based scheduling 

procedure based on an idea found in Morton and Pentico (1993).  For each iteration of the procedure, 

jobs are ordered at each machine based on the notion of revised slack.  Revised slack is a function of 

the job's due date, processing time on the current machine and all downstream operations, and 

estimated queuing times for all downstream operations.  Downstream queuing times are estimated from 

the previous iteration of the procedure.  Hodgson, et al. (2000) enhanced the procedure by 

accelerating hot jobs, i.e. those jobs whose lateness is equal or nearly equal to the Lmax value.  

Acceleration is accomplished by inserting idle time so that when a hot job arrives at a machine, it begins 

processing immediately. 

In this paper, a simulated annealing post processing procedure is added to the Virtual Factory.  

The goal is to develop a procedure that improves on the Virtual Factory solutions, and does so 

efficiently.  The procedure is evaluated on large-scale problems and compared to a lower bound.  In 

addition, the Dermikol, et al. (1998) benchmark problems are evaluated and the results are compared 

to the Balas, et al. (1998) solutions. 

2. Algorithm Development 
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We experimented with a variety of local improvement procedures for the Virtual Factory 

solution.  Based on these experiments, simulated annealing was selected for further evaluation since it 

yielded the most promising results.  Simulated annealing requires a solution representation, a method to 

generate initial solutions, a method to generate neighboring solutions, and a method to evaluate 

neighboring solutions.  Each of these is described below. 

2.1 Solution Representation 

A solution is represented by a sequence of jobs for each and every machine, referred to here as 

the machine-job sequence.  For example, a possible solution to a 4-machine, 3-job problem is: 

 Machine Job Sequence 
1  {1,2,3} 
2  {2,1,3} 

 3  {3,1,2} 
4 {1,3,2} 

2.2 Initial Solution 

An initial solution is generated for the J//Lmax problem using the Virtual Factory (Hodgson, et al. 

1998, 2000) described above.  For the benchmark problems, the Virtual Factory produces solutions 

close to, and in some cases, better than the Demirkol, et al. (1998) upper bounds after only a few CPU 

seconds.  However, they are generally not as good as the Balas, et al. (1998) upper bounds. 

2.3 Neighboring Solutions 

Given a solution, a neighbor is generated by switching or interchanging the order of a pair (or 

pairs) of adjacent jobs on a machine.  The neighboring solution shown below results from the two pair-

wise interchanges on the initial solution (shown above).  Jobs 3 and 1 have been interchanged on 

machine 3, and jobs 3 and 2 have been interchanged on machine 4. 

 Machine Job Sequence 
1  {1,2,3} 
2  {2,1,3} 

 3  {1,3,2} 
4 {1,2,3} 

For the makespan problem, Van Laarhoven, et al. (1992) chose a neighborhood space that 

only investigates pair-wise interchanges on the critical path.  Here, for a given solution to the Lmax 

problem, the critical path is obtained by tracing backwards from the last operation of the Lmax job (i.e., 
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the job whose lateness is Lmax) and determining if that operation is constrained by the preceding 

operation on the same machine or the preceding operation of the same job.  In some cases, the critical 

path will diverge when an operation is constrained by both operations.  Other authors investigating 

search heuristics for the job shop problem use variants of the Van Laarhoven, et al. (1992) general 

neighborhood structure that an interchange must contain an operation on the critical path (Dell’Amico 

and Trubian, 1993, Nowicki and Smutnicki, 1996, and Pezzella and Merelli, 2000). 

However, consider a schedule S for the Lmax problem in figure 1.  Assume all jobs have a 

common due date, (di = 10), and the layout in figure 1 represent each job's process times and does not 

violate any jobs' technological routes.   For this schedule Lmax = 1 and job 4 is the Lmax job.  The 

shaded jobs represent those on the critical path.   

 

 
Figure 1 - Schedule S 

Observe the following pair-wise interchanges on the critical path: 
 

Machine Interchange Observation 
A 1&4 Lmax = 1 
A 3&1 Lmax = 2 
A 2&3 Infeasible 
A 2&5 Lmax = 1 
B 2&3 Lmax = 2 
B 1&2 Lmax = 3 

 

From the observations of pair-wise interchanges on the critical path, no interchange leads to an 

immediate improvement.  However, if jobs 3 and 1 are interchanged on machine A, with the 

simultaneous interchange of 5 and 1 on machine C, an improved Lmax of 0 is obtained.  Therefore, the 
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neighborhood investigated in this paper considers simultaneous pair-wise interchanges of jobs both on 

and off the critical path.   

2.4 Neighborhood Generation 

Experimentation with various interchange schemes resulted in the development of the following 

neighborhood generation scheme. 

- Let H be the set of the machine/job combinations that lie on the critical path. 

- Let K represent the maximum number of pair-wise interchanges to consider, I represent the 

mean number of interchanges to consider, and C (C<I) represent the mean number of 

interchanges on the critical path to consider. 

- Assuming that a neighboring solution is generated from at least one pair-wise interchange, the 

following probabilities are generated using the parameters defined above.  Let α  be the fraction 

of interchanges to accept, and ?  be the fraction of interchanges on the critical path.  Then, 

1
1

−
−

=α
K
I

 and 
I
C

=? . 

- The following algorithm generates neighboring solutions using the parameters K, I, and C: 

1.  Generate a U[0,1] random number, 0u . 
-  if ?0 ≤u , then select a job/machine combination from H and perform a pair-wise 

interchange with the previous job. 
- else, select a job/machine combination at random that is not in H and perform an 

interchange. 
2. Perform the following K-1 times: 

- generate a U[0,1] random number, 1u .  If α≤1u  then: 
- generate a U[0,1] random number 2u . 

-  if ?2 ≤u , then select a job/machine combination from H and perform a 
pair-wise interchange, 

- else, select a job/machine combination at random that is not in H and 
perform an interchange. 

In summary, the neighborhood search is defined by parameters that specify the maximum 

number of pair-wise interchanges, the mean number of interchanges to consider, and the mean number 

of interchanges to be on the critical path.  Through experimentation a robust parameter set can be 

determined.  Figure 2 shows typical results of such an experiment for the Demirkol et al. (1998) 

problem ‘r_20_15_1_1_2’.  The figure indicates the improvement in Lmax over time for various 
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combinations of parameters for the neighborhood generator.  Note that the parameter sets that include 

both interchanges on and off the critical path (e.g. K, I, C = 4, 1.5, .8 or 2, 2, 1, respectively) have the 

best performance both in time and quality.  The parameter set of K, I, C = 1,1,1, respectively, 

represents the Van Laarhoven, et al. (1992) neighborhood.  These results are representative of all 

problem sets analyzed. 

Performance of Neighborhood - r_20_15_1_1_2
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Figure 2 – Comparison of neighborhood generation parameter sets (K_I_C) 

2.5 Solution Evaluation 

Once a neighboring solution is generated, a computationally efficient evaluation method is 

necessary for the simulated annealing procedure to be of practical value.  Given a fixed machine-job 

sequence, we were able to develop an efficient constructive algorithm for finding the minimum Lmax 

schedule (see Appendix A).  The algorithm is a key enabler for the approach taken here. 
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2.6 Simulated Annealing Procedure 

The simulated annealing procedure described below is a modification of the classic Johnson et 

al. (1989) procedure. 

1. Obtain an initial solution, S, using the Virtual Factory. 
2. Start with an initial temperature, T.  Set S* (best solution found thus far) to S. 
3. Perform the following loop until a maximum runtime R has been reached. 

3.1 Perform the following loop G times. 
3.1.1 Generate a random neighbor S' of S. 
3.1.2 Let δ = cost (S') – cost (S). 
3.1.3 If δ < 0 (downhill move), set S = S' and  

If(cost(S’) < cost(S*), set S* to S’. 
3.1.4 Else If δ > 0 (uphill move), Set S = S' with probability Te d−  

3.2 If loop 3.1 has completed B times with no change in cost (S), 
go to 3.3 (frozen solution). 

Else, Set T = rT (reduce temperature), and return to 3.1. 
3.3 Set T = initial T (reset temperature). 

  Set S to S* (set current solution to best found thus far). 
4. When maximum runtime is reached, return S*. 

 Loop 3.1 is the classic Johnson et al. (1989) simulated annealing approach of generating 

neighbors at a given temperature, moving to any superior solutions, and allowing for the move to inferior 

solutions with some probability related to the temperature.  The temperature is reduced after G 

iterations of Loop 3.1, thus reducing the chance of moving to inferior solutions as the process is cooled. 

 The classic simulated annealing approach is modified by enclosing it in Loop 3, which simply 

reheats the process to the initial temperature when the process has reached a temperature such that no 

new solutions are being accepted.  The best solution found thus far is retrieved as the current solution.  

This, in effect, keeps the process from drifting away from this best solution.    This approach of 

"reheating" the process is supported by Kolonko (1999) where he uses a reheating approach to obtain 

excellent results for the classic job shop problem of minimizing makespan.  Furthermore, Kolonko 

shows that simulated annealing does not necessarily converge to the global optimum for the job shop 

problem because the standard neighborhoods used are not symmetric, thus a "reheating" approach is 

helpful to avoid becoming trapped in local optimum. 
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3. Experimentation 

3.1 Industrial-sized problems 

The objective in this paper is to determine if results obtained by Hodgson et al. (2000) could be 

improved in a timely manner.   To this end, a series of experiments was performed using industrial-sized 

problems as defined in Hodgson et al. (2000).  They examined problem sets consisting of 250 jobs, 50 

machines, and 7 operations per job; and 1,000 jobs, 100 machines, and 7 operations.  Processing times 

for the jobs were generated as Uniform [1-200].  Job routings are assumed to be Uniformly distributed 

across all machines, with the provision that a machine can appear only once on a route. 

Demirkol, et al. (1998) noted that problem difficulty is a function of the due date range, i.e. the 

difference in the due dates between the jobs with the smallest and largest due dates.   

Experiments were performed to determine the performance of the simulated annealing improvement 

procedure.  For comparison, lower bounds are obtained using a procedure from Carlier and Pinson 

(1989).  The difference between the lower bound and Lmax found by the Virtual Factory was averaged 

across 30 problems for each range.  Lmax values were also found by applying the simulated annealing 

improvement procedure for 1, 5, and 10 minutes, respectively.  Figures 3 and 4 depict the results.  Each 

point on the charts represents an average of 30 problem instances.  Note that these values (Lmax – lower 

bound) are less than the processing time of a single operation.  One can observe that the simulated 

annealing post processor improved the results, and that the benefits were obtained relatively early in the 

run.  One can also observe that for problem sizes of 250 jobs, annealing for one minute provides the 

majority of improvement, with little additional value gained by longer annealing times.  On average, the 

difference of the Lmax values found from the lower bounds (shown in figure 3) were reduced by 67.6%, 

80.0%, and 83.8% after one, five and ten minutes of annealing, respectively, for the 250 job problems.  

For the 1,000 job problems, annealing for five minutes provides the majority of improvement where 

58.1%, 72.3%, and 77.1% reductions in the difference from the lower bound are found after one, five 

and ten minutes of CPU time, respectively, (figure 4). 

3.2 Benchmark problems 

As an additional validation, benchmark problems were obtained from Demirkol et al. (1998) 

(listed on the Internet site http://palette.ecn.purdue.edu/~uzsoy2/spssm.html).  Various scheduling 

problems are posted on this site, along with the lower bounds (LB), best known solutions (UB) and the 
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CPU time required to obtain the best solution.  Of interest here are the 160 problems under the section 

J//Lmax. 

For the 160 benchmark problems, the Virtual Factory/Simulated Annealing (VFSA) procedure 

was run using values of 0.5, 500,000, 2, and 0.8 for parameters T, G, B, and r, respectively.  Values of 

4, 1.5 and 0.8 were used for the neighborhood parameters K, I and C, respectively. 

Table 1 lists each of the benchmark problems with its corresponding lower bound (LB), best 

known solution (UB) from Balas et al. (1998), and CPU time (SUNSparc-330 workstation) to achieve 

that solution.  Results from the VFSA procedure are presented with the Lmax values obtained at CPU 

times of 5, 30, 60, and 120 minutes.  Runs were performed on a 1.4 GHz Intel processor.  Also posted 

are the best solutions found during various trials of VFSA parameters.  The first two parameters of the 

problem name specify the problem size by number of jobs and number of machines, respectively.  

Shaded cells represent the best known solutions. 

Figure 5 is a graph of the time required by the VFSA to equal or surpass the best known 

solutions to the benchmark problems.  For example, within 900 seconds, the VFSA found solutions 

equal to or better than Balas et al. (1998) for 90 of the benchmark problems.  Of these 90 problems, 

the VFSA found superior solutions in 70 cases.  The 20 problems with the same solution may be the 

result of both having obtained the optimal solution.  In 120 minutes, the best known solution was 

obtained for 141 problems with an improved solution found for 116 of these problems. 

Figures 6-8 are graphical depictions of the quality of the VFSA compared to the Balas upper 

bounds for the 5, 30, and 60 minutes of CPU time.  Negative values indicate by how much the VFSA 

procedure improved the upper bound. 

4. Observations and Conclusion 

Simulated annealing coupled with the Virtual Factory is shown to be an effective approach to 

solving the J//Lmax job shop problem.  For industrial-sized problems, the simulated annealing 

improvement procedure provided significant improvement to the schedule for additional run times of as 

little as 1 minute, with little additional improvement after 5 minutes.  We found that the simulated 

annealing procedure benefits from a good starting point (i.e., the Virtual Factory) and found that the new 

parameter-driven neighborhood provided a more effective search mechanism over the traditional 
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approach of searching only along the critical path.  Additionally, the reheat step in the annealing process 

helped re-center the search and helped to avoid becoming trapped in local optima. 

Additionally, experimentation with benchmark problems validated the performance of the 

Virtual Factory with simulated annealing.  Using a single parameter set, new or equivalent upper bounds 

were found for 36%, 69%, and 80% of the problems for run times of 5, 30, and 60 minutes, 

respectively.  During our experimentation with a number of parameter settings, new or equivalent upper 

bounds were found for 159 of the 160 benchmark problems (see ‘Best VFSA’ column, table 1, and 

Schultz, 2001). 
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Figure 3: Performance to lower bound, 250 jobs/50 machines/7 operations  
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Figure 4: Performance to lower bound, 1,000 jobs/100 machines/7 operations  
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Figure 5: Performance of the VFSA versus computation time 
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Figure 6: Comparison to Balas Solutions at 5 minutes 
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Figure 7: Comparison to Balas Solutions at 30 minutes 
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Figure 8: Comparison to Balas Solutions at 60 minutes 
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Table 1: Computational Results for Benchmark Problems 

 
    VFSA: K=4,I=1.5,C=0.8   

 Problem Name  LB  Previous 
UB (from 
Uzsoy) 

 UB (best 
known from 

Balas) 

Balas 
CPU sec. 

After  
5 min 

After  
30 min 

After  
60 min 

After  
120 min 

Best VFSA 

 r_20_15_1_1_2 1140 1464 1263 175 1299 1275 1275 1244 1244 
 r_20_15_1_1_3 1182 1501 1304 98 1271 1268 1268 1266 1258 
 r_20_15_1_1_4 1160 1492 1396 127 1367 1332 1332 1332 1326 
 r_20_15_1_1_6 1027 1448 1271 145 1229 1229 1229 1222 1208 
 r_20_15_1_1_8 1127 1552 1459 135 1449 1417 1388 1388 1388 
 r_20_15_1_2_1 1721 2090 1817 85 1818 1817 1817 1817 1817 
 r_20_15_1_2_10 1775 2092 1873 39 1873 1873 1873 1873 1873 
 r_20_15_1_2_5 1925 2181 1949 37 1930 1930 1930 1930 1930 
 r_20_15_1_2_8 1599 1785 1636 15 1636 1636 1636 1636 1636 
 r_20_15_1_2_9 1956 2246 2020 37 2020 2020 2020 2020 2020 
 r_20_15_2_1_1 1785 2165 2000 11 2014 1972 1970 1963 1960 
 r_20_15_2_1_3 1727 2100 1976 131 1971 1918 1901 1900 1898 
 r_20_15_2_1_5 1521 1839 1726 121 1697 1690 1684 1684 1683 
 r_20_15_2_1_7 1575 1957 1908 118 1846 1830 1824 1824 1824 
 r_20_15_2_1_9 1858 2143 1968 110 1955 1929 1914 1914 1913 
 r_20_15_2_2_10 1282 1682 1541 119 1525 1520 1520 1500 1475 
 r_20_15_2_2_2 1688 2174 1877 123 1918 1886 1869 1869 1865 
 r_20_15_2_2_3 1894 2381 2118 119 2173 2126 2126 2125 2117 
 r_20_15_2_2_4 1663 2018 1762 77 1730 1730 1730 1721 1721 
 r_20_15_2_2_7 1596 1943 1778 93 1776 1763 1763 1763 1759 
r_20_20_1_1_10 1182 1708 1583 145 1642 1593 1585 1582 1574 
r_20_20_1_1_3 1569 2248 2023 205 2056 1985 1985 1985 1974 
r_20_20_1_1_4 1226 1753 1576 158 1571 1522 1507 1507 1506 
r_20_20_1_1_6 1366 1962 1756 147 1771 1748 1748 1745 1719 
r_20_20_1_1_7 1391 2013 1911 174 1830 1800 1799 1785 1785 
r_20_20_1_2_2 2106 2465 2199 81 2192 2190 2186 2186 2186 
r_20_20_1_2_4 2469 2835 2469 10 2469 2469 2469 2469 2469 
r_20_20_1_2_6 2376 2842 2533 126 2542 2514 2504 2504 2504 
r_20_20_1_2_8 2378 2712 2378 9 2378 2378 2378 2378 2378 
r_20_20_1_2_9 2147 2631 2249 91 2249 2249 2249 2249 2245 
r_20_20_2_1_2 1776 2638 2431 192 2336 2334 2334 2334 2310 
r_20_20_2_1_4 1845 2535 2392 189 2395 2365 2354 2354 2336 
r_20_20_2_1_6 1868 2647 2247 179 2275 2244 2244 2244 2230 
r_20_20_2_1_7 1947 2640 2391 165 2476 2416 2402 2382 2382 
r_20_20_2_1_8 1927 2627 2429 172 2428 2414 2414 2414 2408 
r_20_20_2_2_1 1982 2617 2344 146 2324 2254 2254 2254 2219 
r_20_20_2_2_3 2294 2851 2651 111 2623 2613 2599 2599 2599 
r_20_20_2_2_5 2518 2966 2720 112 2701 2700 2685 2644 2644 
r_20_20_2_2_6 2401 3029 2567 109 2560 2524 2512 2512 2512 
r_20_20_2_2_7 2419 3118 2621 128 2677 2632 2632 2632 2621 
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Table 1 – cont. 

 
     VFSA: K=4,I=1.5,C=0.8   

 Problem Name  LB  Previous 
UB (from 
Uzsoy) 

 UB (best 
known from 

Balas) 

Balas 
CPU sec. 

After  
5 min 

After  
30 min 

After  
60 min 

After  
120 min 

Best VFSA 

r_30_15_1_1_10 1185 1379 1295 133 1325 1275 1245 1231 1231 
r_30_15_1_1_5 1205 1360 1209 134 1289 1289 1289 1289 1205 
r_30_15_1_1_6 1255 1441 1270 108 1276 1255 1255 1255 1255 
r_30_15_1_1_7 1263 1459 1308 167 1363 1293 1293 1293 1293 
r_30_15_1_1_9 1320 1483 1386 142 1380 1380 1358 1358 1347 
r_30_15_1_2_10 2240 2810 2455 108 2383 2383 2383 2383 2383 
r_30_15_1_2_2 2436 3029 2526 85 2526 2526 2526 2526 2526 
r_30_15_1_2_3 1935 2311 1982 59 1982 1982 1982 1982 1982 
r_30_15_1_2_5 2475 2940 2601 115 2598 2598 2598 2598 2598 
r_30_15_1_2_8 2169 2531 2320 77 2329 2302 2302 2302 2302 
r_30_15_2_1_1 2042 2347 2157 192 2203 2158 2158 2158 2119 
r_30_15_2_1_3 2189 2470 2339 124 2346 2269 2269 2269 2265 
r_30_15_2_1_4 2401 2666 2549 184 2564 2485 2485 2485 2485 
r_30_15_2_1_8 2252 2750 2493 191 2429 2429 2398 2381 2380 
r_30_15_2_1_9 2224 2496 2366 194 2332 2289 2284 2284 2268 
r_30_15_2_2_3 2068 2678 2377 133 2399 2357 2344 2344 2344 
r_30_15_2_2_5 1960 2515 2212 141 2245 2217 2158 2141 2141 
r_30_15_2_2_6 1734 2433 2149 183 2182 2142 2130 2126 2070 
r_30_15_2_2_7 2075 2510 2196 149 2248 2215 2205 2205 2165 
r_30_15_2_2_9 1922 2380 2195 133 2282 2179 2157 2157 2139 
r_30_20_1_1_1 1611 2094 1855 317 1840 1753 1753 1742 1742 
r_30_20_1_1_2 1575 2173 1846 303 1872 1806 1796 1773 1755 
r_30_20_1_1_3 1268 1816 1587 335 1656 1566 1522 1522 1522 
r_30_20_1_1_6 1412 1952 1656 269 1608 1607 1531 1531 1531 
r_30_20_1_1_9 1710 2237 1880 202 1915 1883 1865 1859 1818 
r_30_20_1_2_2 2386 3021 2641 246 2760 2710 2694 2688 2641 
r_30_20_1_2_5 2292 2896 2315 42 2294 2292 2292 2292 2292 
r_30_20_1_2_7 2817 3601 2897 142 2908 2884 2882 2882 2882 
r_30_20_1_2_8 2713 3577 3023 226 3082 2989 2982 2965 2965 
r_30_20_1_2_9 2314 3260 2527 223 2604 2541 2541 2476 2450 
r_30_20_2_1_10 2496 3074 2873 272 2969 2872 2819 2819 2819 
r_30_20_2_1_2 2178 2953 2669 318 2630 2593 2570 2553 2553 
r_30_20_2_1_3 2298 3032 2780 361 2761 2722 2722 2722 2673 
r_30_20_2_1_6 2461 3116 2766 303 2774 2739 2697 2683 2683 
r_30_20_2_1_7 2562 3104 2833 285 2898 2878 2841 2816 2803 
r_30_20_2_2_10 2570 3330 2713 224 2743 2743 2722 2720 2680 
r_30_20_2_2_2 2254 3106 2560 211 2581 2581 2561 2553 2515 
r_30_20_2_2_4 2061 2959 2349 340 2387 2386 2379 2349 2339 
r_30_20_2_2_5 2485 3409 2781 228 2819 2810 2774 2743 2743 
r_30_20_2_2_8 2412 3088 2514 198 2564 2448 2448 2448 2448 
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Table 1 – cont. 

 
     VFSA: K=4,I=1.5,C=0.8   

 Problem Name  LB  Previous 
UB (from 
Uzsoy) 

 UB (best 
known from 

Balas) 

Balas 
CPU sec. 

After  
5 min 

After  
30 min 

After  
60 min 

After  
120 min 

Best VFSA 

r_40_15_1_1_1 1299 1468 1308 212 1358 1308 1308 1308 1308 
r_40_15_1_1_10 1460 1527 1527 76 1460 1460 1460 1460 1460 
r_40_15_1_1_3 1191 1431 1308 185 1368 1291 1291 1291 1291 
r_40_15_1_1_4 1542 1648 1601 162 1696 1601 1601 1601 1601 
r_40_15_1_1_8 1533 1787 1630 311 1619 1595 1563 1563 1563 
r_40_15_1_2_10 1669 2459 1923 187 2063 2063 1976 1954 1917 
r_40_15_1_2_3 1563 2397 1706 128 1777 1756 1746 1723 1712 
r_40_15_1_2_5 1545 2053 1589 114 1686 1608 1589 1568 1563 
r_40_15_1_2_6 1695 2191 1746 81 1754 1731 1731 1731 1731 
r_40_15_1_2_7 1936 2420 1940 37 1940 1940 1940 1940 1940 
r_40_15_2_1_10 3048 3120 3048 43 3048 3048 3048 3048 3048 
r_40_15_2_1_2 2815 2894 2855 128 2856 2855 2855 2855 2855 
r_40_15_2_1_6 2818 2875 2854 78 2856 2854 2854 2854 2854 
r_40_15_2_1_8 2878 2924 2878 146 2929 2929 2924 2924 2878 
r_40_15_2_1_9 2893 3093 2911 204 2911 2911 2911 2893 2893 
r_40_15_2_2_1 1836 2617 2125 269 2169 2119 2086 2080 2080 
r_40_15_2_2_10 1896 2539 2234 231 2326 2232 2224 2192 2186 
r_40_15_2_2_2 2125 3042 2575 269 2575 2537 2536 2536 2517 
r_40_15_2_2_3 2038 2641 2275 208 2320 2276 2258 2258 2258 
r_40_15_2_2_6 2119 2767 2350 242 2358 2358 2339 2337 2337 
r_40_20_1_1_1 1395 2058 1679 461 1690 1631 1606 1597 1590 
r_40_20_1_1_10 1411 1834 1643 364 1606 1580 1580 1547 1547 
r_40_20_1_1_2 1640 2143 1888 326 1942 1812 1802 1802 1802 
r_40_20_1_1_4 1597 2337 1810 481 1846 1734 1712 1712 1706 
r_40_20_1_1_6 1835 2212 1941 499 1895 1876 1876 1876 1835 
r_40_20_1_2_2 2798 3565 2819 192 2870 2798 2798 2798 2798 
r_40_20_1_2_3 2964 3862 3146 204 3146 3146 3146 3146 3146 
r_40_20_1_2_4 2610 3444 2630 180 2630 2630 2630 2630 2630 
r_40_20_1_2_8 2441 3064 2500 98 2505 2500 2500 2500 2500 
r_40_20_1_2_9 3059 3895 3071 38 3059 3059 3059 3059 3059 
r_40_20_2_1_1 2827 3430 3051 405 3152 3093 3050 3042 3001 
r_40_20_2_1_3 3025 3572 3273 468 3194 3164 3159 3116 3116 
r_40_20_2_1_4 2843 3366 3043 496 3156 3034 2993 2993 2993 
r_40_20_2_1_5 3129 3535 3334 380 3208 3172 3162 3159 3111 
r_40_20_2_1_8 3113 3691 3360 437 3398 3357 3341 3318 3317 
r_40_20_2_2_1 2643 3560 3071 438 3208 3100 3063 3063 3059 
r_40_20_2_2_5 2687 3985 3310 431 3338 3222 3222 3204 3163 
r_40_20_2_2_7 2479 3469 2788 387 2885 2822 2764 2759 2752 
r_40_20_2_2_8 2234 3154 2443 362 2629 2507 2487 2451 2439 
r_40_20_2_2_9 2673 3540 3038 431 3041 2985 2985 2963 2942 
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Table 1 – cont. 

 
     VFSA: K=4,I=1.5,C=0.8   

 Problem Name  LB  Previous 
UB (from 
Uzsoy) 

 UB (best 
known from 

Balas) 

Balas 
CPU sec. 

After  
5 min 

After  
30 min 

After  
60 min 

After  
120 min 

Best VFSA 

r_50_15_1_1_4 1707 1764 1707 267 1707 1707 1707 1707 1707 
r_50_15_1_1_5 1418 1545 1418 330 1545 1545 1420 1420 1418 
r_50_15_1_1_7 1050 1419 1072 381 1183 1080 1078 1050 1050 
r_50_15_1_1_8 1957 2042 1983 201 1985 1985 1985 1985 1983 
r_50_15_1_1_9 1757 1804 1757 150 1839 1839 1839 1807 1757 
r_50_15_1_2_1 2284 3102 2346 133 2346 2346 2346 2346 2346 
r_50_15_1_2_2 2137 2661 2195 107 2208 2195 2195 2195 2186 
r_50_15_1_2_4 2085 2692 2154 207 2248 2095 2093 2087 2087 
r_50_15_1_2_7 2192 2834 2301 122 2346 2278 2278 2269 2262 
r_50_15_1_2_8 2217 3024 2364 251 2435 2370 2364 2364 2364 
r_50_15_2_1_2 3181 3220 3181 389 3181 3181 3181 3181 3181 
r_50_15_2_1_4 3277 3316 3281 237 3311 3277 3277 3277 3277 
r_50_15_2_1_5 3216 3492 3216 273 3345 3345 3343 3343 3216 
r_50_15_2_1_8 3391 3525 3397 228 3416 3397 3397 3397 3391 
r_50_15_2_1_9 3396 3466 3396 332 3396 3396 3396 3396 3396 
r_50_15_2_2_10 2345 3130 2619 342 2759 2697 2653 2615 2615 
r_50_15_2_2_5 2381 3186 2615 272 2814 2622 2499 2499 2449 
r_50_15_2_2_6 2486 3307 2775 434 2855 2820 2820 2759 2742 
r_50_15_2_2_7 2464 3415 2812 329 2867 2825 2785 2753 2753 
r_50_15_2_2_9 2323 3338 2724 375 2941 2941 2941 2740 2720 
 r_50_20_1_1_2 1794 2355 2007 551 2050 1966 1882 1882 1882 
 r_50_20_1_1_3 1746 2390 1948 743 1972 1914 1911 1811 1811 
 r_50_20_1_1_4 1786 2142 1881 608 1954 1905 1893 1893 1786 
 r_50_20_1_1_5 1591 2181 1757 551 1839 1781 1756 1710 1710 
 r_50_20_1_1_6 1845 2219 1912 464 1946 1861 1861 1861 1861 
 r_50_20_1_2_10 2824 3898 2914 305 3047 2981 2912 2887 2864 
 r_50_20_1_2_2 2440 3385 2445 176 2477 2444 2444 2444 2444 
 r_50_20_1_2_5 3205 4091 3229 287 3267 3262 3205 3205 3205 
 r_50_20_1_2_6 2363 3455 2595 361 2814 2677 2544 2530 2530 
 r_50_20_1_2_8 2918 3852 3044 327 3161 3154 3097 3052 3037 
r_50_20_2_1_10 3407 3789 3522 435 3528 3476 3475 3476 3457 
r_50_20_2_1_2 3189 3788 3277 467 3382 3288 3266 3230 3230 
r_50_20_2_1_4 3527 3758 3562 547 3536 3527 3527 3527 3527 
r_50_20_2_1_5 3419 3875 3504 552 3454 3432 3432 3432 3432 
r_50_20_2_1_7 3642 3971 3708 246 3796 3746 3746 3746 3669 
r_50_20_2_2_1 2500 3712 3020 473 3213 3106 3093 3020 2981 
r_50_20_2_2_10 2628 4042 3142 602 3265 3241 3204 3117 3117 
r_50_20_2_2_4 2551 3762 3072 614 3137 3045 3045 3028 3028 
r_50_20_2_2_5 2774 4184 3347 550 3447 3365 3363 3324 3281 
r_50_20_2_2_8 2472 3649 3099 636 3169 3058 3020 3017 3017 
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Appendix A – Constructive algorithm to find the minimum Lmax schedule 

If given a fully described machine-job sequence, the following is a constructive algorithm that efficiently 

finds the minimum Lmx schedule. 

Definitions: 

mach_ptr(j) – pointer to a location in machine j’s job sequence list. 
job_ptr(i) – pointer to a location in job i’s operation list. 
mach_time(j) – current time on machine j’s schedule up to which jobs have been 

   assigned. 
job_time(i) – current time for job i’s schedule up to which operations have 

   been assigned. 

Initialization: 

 Set mach_ptr(j) = 1. 
 Set job_ptr(i) = 1. 
 Set mach-time(j) = 0. 
 Set job_time(i) = 0. 

Construction: 

1. Set j = 1. 

2. For machine j, identify job i in the machine’s job sequence at the location identified by 
mach_ptr(j). 

3. If job_ptr(i) contains machine j, then a match has occurred.  Place job i on the schedule for 
machine j at the maximum of mach_time(j) and job_time(i) Set mach_time(j) and job_time(i) 
equal to this maximum value plus the process time for job i, operation j.  Increase mach_ptr(j) and 
job_ptr(i) by 1. 

4. Set j = j+1.  If j < M (the number of machines) go to 2.  Otherwise return to step 1 as long as at 
least one match in step 3 has occurred during the complete pass through all machines, j = 1 to M. 

5. Terminate construction if a match did not occur. 

Return solution: 

If the construction terminates with all job operations assigned, then the provided job sequence is feasible 

and the schedule is optimal for the given machine-job sequence.  Otherwise, the solution is infeasible for 

the given job sequences on the machines. 
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