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The learning process is invariably improved by alternative, complementary views of a concept.
This paper’s pictorial representation of the discrete Fourier transform (DFT) is helpful in that
students can understand internal steps of development, as well as the final result, in terms of
vectors. It builds upon the widely known fact that the exponential terms in the transform pair are
roots of unity in the complex plane; or in alternative physics terminology, they are unit vectors.
After weighting these vectors by sampled values of the function to be transformed, using a simple

recipe, the DFT is obtained through vector addition.

L. INTRODUCTION

The Fourier transform has received greater attention in
experimental physics as instruments based on it have be-
come popular.' Meyer-Arendt* displays boldness in his
statement: “Fourier transform spectroscopy is the superior
method. Even more important, Fourier spectroscopy is not
simply the application of another little invention; rather, it
marks a turning point in philosophy, away from high-pre-
cision delicate optics, toward a simple, rugged sensor cou-
pled with sophisticated electronic data processing.” Many
disciplines other than optics have also been assisted by this
powerful mathematical tool, since it is now possible to per-
form rapid conversion of time traces to the frequency do-
main, using the fast Fourier transform (FFT).? For exam-
ple, power spectra have become central to the study of
systems displaying deterministic chaos.®” In the realm of
image analysis, some engineers have focused much of their
career on computer techniques based on the two-dimen-
sional discrete Fourier transform (DFT).® In all of these
examples, which represent a very small fraction of the
whole world of Fourier processing, the advent of inexpen-
sive digital computers was prerequisite to making the nec-
essary computations practical. Numerous algorithms
based on the FFT are now available to take an analog to
digital converted voltage versus time record and produce a
spectrum from it. Typically, these records are at least 1024
samples, if the resolution is to be reasonable.

The present paper describes an unconventional way of
viewing the DFT. It facilitates understanding for those
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who are best served by visual aids. It has been successfully
used by the author for the past 4 years in teaching an under-
graduate optics course, as well as an experimental laborato-
ry in computational physics. As opposed to the “abstrac-
tion” of the complex exponential representation, it is based
on vectors. Most professionals with whom the matter has
been discussed have recognized that the resultant produced
by any DFT algorithm can be thought of as a set of vectors.
The author is not aware, however, of anyone else having
used vectors in this way for its development.

II. THEORY
For the present paper, the Fourier transform pair in x
and k is defined as

G(k) =Jm g(x)e™ " dx, (1a)

g(x) = —l—f G(k)e™ dk. (1b)
27 J_ ,

As noted in Guenther,® there are alternative forms in
which (1) the pair of equations is symmetric, by associat-
ing (27) ~'/? with each one; and/or (2) the positive and
negative exponentials are interchanged. The six different
forms (all acceptable) have been the source of confusion
for many students through the years.

The variable k, which is conjugate to the position vari-
able x, involves the spatial frequency £, as follows:

k=2xf, =2n/X, (2)
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where X is the length of the interval being transformed.
Students typically encounter the Fourier transform pair for
the first time in terms of time ¢ and angular frequency
o = 27f. Though irrelevant to mathematicians, the present
notation is purposely directed toward optical applications.

For numerical evaluation, Eq. (1) is usually made dis-
crete in terms of £, rather than k, as follows:

o)Az

J=0,12,..N -1, (3a)
N—1
( ) =_1_ z ( ) 121TLM/N L — 0’1’2,".,N_ 1,
(3b)

where X is the total distance over which the transform is
approximated, and the space domain function g(x) is sam-
pled at NV equispaced points. The frequency whenJ = N /2
is the Nyquist folding frequency, '® and for both the Jand L
integers, values greater than N /2 correspond to negative
values for the associated variables.

It is convenient, and consistent with the usual radix 2
FFT, to choose the number of sample points according to
the relation N = 27, where 7 is an integer. This is illustrated
in Fig. 1 for the case of N = 8. The eight roots of unity for
this case are the points of the arrowheads. The vector (pha-
sor) convention has been purposely emphasized, because
this set of vectors will be used in later examples of trans-
form construction by vector graphics. The examples are
primarily of pedagogical value, since practical algorithms
typically use 1024 or more points. The increase of resolu-
tion as.Vincreases would result in prohibitively long execu-
tion times were it not for the FFT.

For purposes of simplification in all of the examples
which follow, the scaling will be selected such that
X /N = 1. This is equivalent to choosing a distance unit
such that the length of the interval which is to be trans-
formed is just equal to the number of samples.

T + Imag.
axis

> 0 >

+ Real axis

v

2

Fig. 1. Roots of unity in the complex plane in terms of unit vectors; the
case shown is for N = 8.
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Further let N = 8, and consider the J = 0, or dc compo-
nent, of Eq. (3a):

G(0) =[g(0) +g(1) + - +g(7)]e ™. (4a)

The expression e ~ © corresponds to the unit vector labeled
0in Fig. 1 (with the convention of representing unit vectors
by boldface type). Perhaps the simplest way to make this
association is to use Euler’s identity e = cos ¢ + i sin ¢.
We thus recognize the dc component to be the unit vector 0
multiplied by the sum of the eight parts of g(i).

Now consider the J = 1, or fundamental component:

G( 1/8) ::g(())e*flﬂo/B +g(1)efi27r1/8

+8(2)e P8 oo 4 g(Te™ (4b)

The exponentials are just the eight unit vectors of Fig. 1, in
sequence, so that the expression can be rewritten,

G(1/8) =g(0)0 +g(1)1 +g(2)2 4 -+- +g(7)7. (4b")

Thus the fundamental is obtained through the addition of a
vector set, the eight parts of which are generated by weight-
ing the eight unit vectors by the sequential values of g.

In a similar manner, it can be readily shown that the
J =2, or second harmonic, is

G(2/8) =g(0)0 + g(1)2 +g(2)4 +g(3)6 4 g(4)0

'+ 8(5)2 +8(6)4 +g(7)6, (4c)
where the roots of unity circle has been traversed twice, and
the eight unit vectors are weighted, every second one, by
the eight values of g. Likewise, the third harmonic is ob-
tained by going around the circle three times, and weight-
ing every third vector by the sequential values of g.

Extending this process to N samples and thus & unit
vectors
j N—-1
G(N) Y (i, (5)

i=0

277/8

where j*i = mod(ji,N) is implied for all unit vectors asso-
ciated with multiple traversals of the circle.

II1. EXAMPLE DFTs USING THE VECTOR
GRAPHICS CONSTRUCTION

A. Delta functions at 4x, and —x,

The discrete transform gives exact results for this case,
even for small N. Figure 2 details the use of Eq. (5) with
N = 8 and the “delta” functions at + 1and — 1. [ A true
delta function cannot be sampled since it is of unit area and
infinite height. Here the single point representing
8(x — x,) is of unit height.] Because it is an even function
that has been transformed, the result is real. The contin-
uous case is shown as the cosine curve in Fig. 2(c), and the
DFT points are the solid circles.

B. Exponential

For this case, g(x) = e ™ *for x positiveand g(x) = Ofor
x negative. One anticipates that the transform must have
both real and imaginary parts, since g(x) is neither even
nor odd. The results are shown in Fig. 3. Note that g(0) has
been set to 0.5, i.e., the midvalue, in keeping with standard
Fourier processing practice at a discontinuity. In compar-
ing with the exact, continuous transform case, which in this
case is easily obtained, one must be careful to account prop-
erly for the factor of 27

In contrast with the delta function case, it is seen that the
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5 6 7 0 1 2 3 4
(a) Function to be transformed, g

1.414 = G(1)
de: G(0)=2 Fund.: <C-===——- 2nd harm
L 7 6(2) =0
3rd Herm. : 14142603 2 = G(4)
4th harm ——— e
21 =53 28=4 4
Sthh 5 6th harm. : G(6) = 0
arm. : =
49 = 1
35=3 /\ 7th harm, : 2/\
-1.414 = G(5) ———

1.414 = 6(7)

(b) Vector Graphics construction

/E
1.

' /‘, . :\
6 7 0 1 2

(c) DFT transformed result, G

Fig. 2. Example discrete Fourier transform (N = 8) of symmetric delta
functions.

small-sample discrete transform is not able to estimate ac-
curately the high-frequency components. This is especially
true of the imaginary part. The errors are not a failure of
the graphics technique, but rather are due to the fact that
the DFT is, in general, an ever poorer approximation to the
continuous transform as the sample number decreases to-
ward zero.

1IV. CONCLUSION

An alternative and complementary view of the discrete
Fourier transform has been presented. Based in vector
graphics, it develops a spectrum of N = 27 parts, where y is
an integer. It does this by weighting ¥ unit vectors, which
are roots of unity, and then finding their sum. The angular
frequency of the “phasor” which rotates on the unit circle
determines the harmonic which is to be developed. For the
fundamental, as an example, the N samples of the function
which is being transformed “modulates” this phasor as it
undergoes a single rotation of the circle at constant angular
velocity. For the second harmonic, the angular velocity is
doubled, and the circle is traversed twice as the phasor is
again modulated by the same N samples of the function. To
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1.0 (a) Function to be transformed, g

05 368
®,
135
\«\, 05 018
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dc : g(0)+g(1)+g(2)+g(3)+g(4)=1.07
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Imeg. N 6(2) —
053 meg. 1354
0184 =-0.32

(b) 2 examples (of the 8) of vector graphics construction

Real part of G

NG /\

S 6 7 01 2 3 4 12}4

Imaginary part of G

(c) DFT transformed result, G

Fig. 3. Example discrete Fourier transform (N = 8) of an exponential.

obtain the complete transform, this process is repeated
through N — 1, to give a resultant N vectors.
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