
Graphical explanation for the speed of the Fast Fourier Transform

arXiv:math/0302212v1 [math.HO] 18 Feb 2003

Graphical explanation for the speed of the Fast Fourier Transform

Randall D. Peters

Physics Department

Mercer University

1400 Coleman Ave

Macon, Georgia 31207

Abstract

For a sample set of 1024 values, the FFT is 102.4 times faster than the discrete Fourier transform (DFT).
The basis for this remarkable speed advantage is the `bit-reversal' scheme of the Cooley-Tukey
algorithm. Eliminating the burden of `degeneracy' by this means is readily understood using vector
graphics.

The key to the power of the fast Fourier transform (FFT), as compared to the discrete Fourier transform
(DFT), is the bit reversal scheme of the Cooley-Tukey algorithm [1]. It is illustrated very simply as
follows. Instead of a practically-sized number of samples in the record to be transformed, consider the
pedagogically useful n = 8, distributed on the unit circle as shown in Fig. 1.

file:///C|/Documents%20and%20Settings/peters_r/Deskt...%20speed%20of%20the%20Fast%20Fourier%20Transform.htm (1 of 3)7/18/2007 4:58:32 AM

http://arxiv.org/abs/math/0302212v1

Graphical explanation for the speed of the Fast Fourier Transform

Figure 1. Means for understanding why the Cooley -Tukey FFT algorithm is so much faster than the
outdated DFT.

Observe that the roots of unity in the complex plane, which have been numbered 0 through 7, `slice the
pie' into 8 equal pieces. Such division requires that the algorithm be expressible as a power of 2; i.e., n =
2 p, where for the figure p = 3. For reasonable resolution, the number of sampled points must typically
be greater than 512; i.e., p > 9.

The usual decimal counting scheme for the 8 'vectors' is as indicated, traversing the phasor diagram
(circle on left) sequentially. In the Cooley-Tukey algorithm, the bits of the binary representation of the
vector are reversed according to significance. Usually, the least significant bit is on the right and the
most significant bit on the left; so that decimal counting is as shown on the right column of the table--
from 0 to 7. With bit reversal, 'lsb' becomes the left most binary digit and the 'msb' is the right most
digit. Thus, for example binary 110 (usually 6) becomes 3. With this bit reversal scheme, the phasor
diagram is not traversed in the usual sequential, circulatory sense; rather there are 'flip-flops' across the
circle. By this `book-keeping' means, there is no needless repetition in the calculation of vector
components (real and imaginary values of a given term in the transform). For example, 5 is the simple
negative of 1, because of the inversion symmetry. We see that the number of `independent' vectors has
been immediately reduced by a factor of 2 through the use of bit-reversal.

There is enormous `degeneracy' (needless repetitive calculations) when one `blindly' calculates the DFT.
With typically-sized sample sets, huge reduction in execution time is possible by recognizing (i) the
inversion symmetries emphasized in Figure 1 above, and also (ii) properties of orthogonality. Because of
the latter, there is further reduction realized by the Cooley-Tukey algorithm. Orthogonality of various
pairs permits the determination of the components of one vector from another by simply interchanging

file:///C|/Documents%20and%20Settings/peters_r/Deskt...%20speed%20of%20the%20Fast%20Fourier%20Transform.htm (2 of 3)7/18/2007 4:58:32 AM

Graphical explanation for the speed of the Fast Fourier Transform

sine terms with cosine terms and vice-versa. Thus, for a large fraction of the vectors in the set, we can
determine the components of a given vector from those of another vector by simply reversing algebraic
sign and/or interchanging sine and cosine terms.

From the discussion above, it is seen (from a computation viewpoint) that there are only 3 `unique'
vectors in the 8-vector set of Figure 1. For a 16-point sample set, the number of `unique' vectors is
readily seen to be 4. Extending to the general case, it is seen that the number of `independent' vectors m,
for which complete trigonometric calculation is necessary to obtain the FFT, is given by

m = p < n = 2 p (1)

In calculating each of the components (real and imaginary pair) of the Fourier transform--one must use
all n vectors of the sampled set. With the DFT as described in [2], it is readily seen that the total number
of operations is thus given by

NDFT = n x n = n2 (2)

since all n vectors are treated as independent. With the FFT, on the other hand, since the number of
independent vectors has been reduced from n to p; the total number of operations (involving time-
consuming sine, cosine calculations) becomes

NFFT = p x n = n log 2 n (3)

Since the CPU processing time required to calculate the Fourier transform is proportional to N, we see
that the speed advantage of the FFT over the DFT is given by

Speed advantage = NDFT / NFFT = n / log 2 n (4)

The savings to be realized with the FFT is dramatic with typical values of n. For example, with a 1K set
of samples (n = 210 = 1024), we see from Eq. (4) that the algorithm is 102.4 times faster.

References:

1. Barry Cipra, "The FFT: Making Technology Fly", SIAM News, Vol. 26, No. 3, May 1993--online at

http://www.siam.org/siamnews/mtc/mtc593.htm

2. R. Peters, "Fourier transform construction by vector graphics", Am. J. Phys. 60, 439-441 (1992).

file:///C|/Documents%20and%20Settings/peters_r/Deskt...%20speed%20of%20the%20Fast%20Fourier%20Transform.htm (3 of 3)7/18/2007 4:58:32 AM

	Local Disk
	Graphical explanation for the speed of the Fast Fourier Transform

