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Abstract

Modern commercial seismometers are without equal in their ability to study earth motions in
the frequency range from 30 mHz to 10 Hz. In the increasingly important lower range from 1 mHz
to 30 mHz, their sensitivity is severely limited. These limitations are discussed in terms of recent
physics discoveries concerned with internal friction. It is shown that the low-frequency performance
can be significantly improved by using a different (i) style of capacitive sensor, and (ii) method
of force-feedback. Advantages of these novel changes are illustrated with a modified long-period
Sprengnether vertical seismometer that was previously part of the WWSSN.

1 Background

Modern seismometers have evolved along a path whose direction was significantly influenced by the work
of Michael Faraday. A variety of detectors have been employed to sense movement of the inertial mass
of the instrument relative to the frame. These involve diverse types of sensors, whose characteristics are
classified mainly as either mechanical, electromagnetic, or optical. The mechanical types are inferior for
reason of friction at contact points, such as a stylus that writes on a blackened drum.

The most successful early form of electromagnetic detector was one that employs a coil of wire and
a magnet. The magnet is fixed to the frame of the instrument, and the coil moves with the mass. (The
mass cannot be allowed to move because of adverse interaction with the earth’s field.) Their relative
motion causes the magnetic flux through the coil to change in time, and its rate of change determines
the voltage appearing across the ends of the wire used to wind the multi-turn coil. The very nature
of this Faraday’s law detector is such that the voltage generated is proportional to the velocity of the
mass. As compared to a measurement of mass position, velocity measurement is a poor choice for those
concerned with improving low-frequency performance. This point is discussed in detail later.

Most modern seismometers of the type employed in the Global Seismographic Network have used a
capacitive sensor to measure mass position. Commonly of the type that is referred to as differential, it
comprises two capacitors that change in opposite manner in response to mass motion. Built with three
closely spaced, parallel plate electrodes; the two outer plates are fixed, and the inner plate moves so
that if one of the capacitors increases by a small amount, then the other capacitor decreases (ideally) by
the same amount. Use of this differential arrangement improves overall sensitivity, in part by providing
a better common mode rejection for the electronics connected to the sensor. Certainly the choice, in
general, of a capacitance sensor has been a proper one, because among readily available non-invasive
sensor types, none is better presently qualified for seismic studies.

A better choice than the (half) differential capacitive sensor described above, and which is universally
used in commercial seismometers, would be one of the ‘fully differential’ capacitive sensors developed in
recent years. The increased symmetry of the fully differential detector yields twice the sensitivity for the
same electrode area and a better common mode rejection ratio. Thus the performance of seismometers
could readily be improved by more than a factor of two, based on just this change alone. We will
see that there are other improvements allowed by changing to a different architecture for the sensor;
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it allows a ‘soft’ force-feedback which is better suited to monitoring low-frequency signals than is the
‘force-balance’ methods commonly used.

One might argue that a magnetic detector would be equally viable; for example, in the form of
a linear variable differential transformer (LVDT). As Erhard Wielandt has pointed out [1], the signal
to noise ratio of an LVDT is inferior (by as much as two orders of magnitude) to that of a capacitive
detector. This inferiority derives from magnetic domain noise related to the Barkhausen effect, involving
the granular nature of ferromagnetism.

1.1 Types of capacitive sensor

The capacitance of a two terminal device (lumped circuit element) is of the form

C = ε0A/d (1)

where ε is the permittivity of the material between parallel electrode plates, which for air of the usual
instrument is close enough to the free space value that the subscript zero has been indicated; i.e.,
ε0 = 8.85× 10−12Nm2/C2. The area of each of the two plates is A and the spacing between them is
d. This equation is an excellent approximation for the capacitance when the gap spacing d is small, so
that fringe electric fields may be ignored.

It is generally desirable to operate with as conveniently small a value of d as possible, because the
sensitivity of the unit as a detector is inversely proportional to d. To state the matter more precisely,
the sensitivity is determined by the size of the electric field between the plates, which increases as d
decreases, for a given drive voltage across the plates.

1.1.1 Variable-gap detector

Differential capacitive detectors of modern commercial (research-grade) seismometers operate on the
basis of gap-spacing variation; i.e.,

C(t) = ε0A/d(t) (2)

For adequate sensitivity, the nominal average spacing must be small, d0 < 1.0 mm. This stringent
requirement on spacing between electrodes having an area > 10 cm2, has influenced the modus operandus
of these instruments. It is a style of force-feedback referred to as ‘force-balance’, in which ‘hard’ coupling
is used to keep the inertial mass virtually fixed in position. Instead of monitoring the position or velocity
of the inertial mass as in the early days of seismometry, they now monitor the ‘error’ signal generated by
the feedback-balance network, i.e., the current supplied to a transducer used to keep the mass virtually
stationary.

1.1.2 Variable-area detector

An alternative to gap-variation is a capacitive sensor that employs area-variation; i.e.,

C(t) = ε0A(t)/d (3)

We will see that the (ideally fixed) spacing d between electrodes for this case can be conveniently
increased by using an array-form of sensor, and constraints to mass movement can be relaxed greatly
as compared to an instrument which operates according to eq(2).

2 Friction in general

Ubiquitous friction, which exists in a variety of forms, places a limit on the sensitivity of a seismometer.
Although physicists impress the world with their knowledge of certain esoterica, we know almost nothing
from first principles about friction [2].
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2.1 Coulomb friction

The form of friction most commonly recognized is the one involving solid surfaces that slide against each
another. Known as Coulomb friction, it was first studied by Leonardo DaVinci and later by Charles
Augustin Coulomb, who is best known for his law of electrostatic forces. As the primary cause for limited
performance of early detectors using mechanical linkages, the magnitude of the kinetic friction force is
(approximately) proportional to the normal contact force between the surfaces, and it is independent of
the surface area of contact and the speed of relative motion between the surfaces. When present as the
primary loss of energy in a mechanical oscillator, it causes the turning points of the motion to decline
along a straight line, as opposed to the exponential decline of other common types. Unlike viscous
friction, Coulomb friction is nonlinear, by virtue of the ‘signum’ function needed to mathematically
describe its damping influence on an oscillator. The direction of this friction force is opposite the
direction of the velocity, but the magnitude of the force is independent of the velocity magnitude. As a
damping force, it is thus described by ~f = − |constant| × sgn(~v)

2.2 Viscous friction

Viscous friction is present as an external-to-the-object retarding force for an object moving relative to
a fluid, whether gas or liquid. It is the only common friction type that can be described by linear
mathematics when it comes to damping of the ‘simple’ harmonic oscillator [3].

Although it frequently yields to a linear description, fluid friction is generally far more complex than
the overly-idealized, common assumption of a drag force proportional to velocity and involving only the
viscosity [4]. In reality, the force of viscous friction generally depends on density of the fluid as well as its
viscosity. The damping coefficient β used in the classical equation ẍ + 2βẋ + ω 2

0 x = 0 should never
be referred to as a ‘constant’. It should also be noted that the subscript zero to distinguish between
the undamped and damped eigenfrequencies is practically unnecessary, since the damping redshift is
generally (perhaps always) too small to actually be measured in the midst of noise. This is an example
of the uncertainty principle (of Heisenberg fame in the analogous quantum mechanical case). It should
also be noted, that in the case of hysteretic damping, there is no theory-predicted damping redshift.

The Reynolds number [5] is rarely small enough for purely laminar flow, free from vortices. Thus
there are ‘history’ features to the drag that imply ‘friction at the mesoscale’ [2], as the mass passes back
and forth through vortices that it generated at earlier times.

Fluid friction at higher speeds is nonlinear in the velocity; the drag force on vehicles at nominal
speeds of travel, for example, is quadratic and not linear in the velocity. A swinging pendulum, such as
a grandfather clock, experiences both linear and nonlinear fluid damping from the air. For seismometers
with a gap-varying capacitive detector, the damping at large amplitudes is mainly linear (viscous) and
derives from air flowing through the plates of the closely spaced capacitive sensor. To reduce this viscous
damping, holes are oftentimes drilled through the electrode plates of the gap-varying type of detector.

At low amplitudes hysteretic damping becomes increasingly important and is now discussed.

2.3 Hysteretic friction

The most important form of friction for seismometers operating at low frequency and low amplitude is
internal (hysteretic) friction. It derives from periodic flexure occuring in solid, load-bearing members,
and is especially important as an anelastic presence in the spring of a vertical instrument.

Hysteretic damping is inherently nonlinear, even though it masquerades as viscous friction. It causes
an exponential free-decay, yet the frequency dependence of the quality factor Q of an oscillator is
distinctly different when regulated by hysteretic as opposed to viscous damping. Q is defined by

Q = 2π
E

|∆E| (4)

where E is the mechanical energy of the oscillator at a specified time and ∆E is the energy lost per
cycle to friction at that time.

For viscous damping Q ∝ ω, with ω = 2π/T where T is the period of oscillation. On the other
hand, for hysteretic damping, Q ∝ ω2. A perfect example of simple harmonic oscillation with ‘viscous’
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damping is that of an RLC electrical circuit. Its equation of motion in terms of the charge q on the
capacitor is given by

q̈ +
R

L
q̇ +

q

LC
= 0 (5)

and it can be shown that Q = ωL/R. Thus the equation of motion can be rewritten in the canonical
linear form

q̈ +
ω

Q
q̇ + ω2

0q = 0 (6)

where ω 2
0 = 1

LC and Q = L
Rω. As noted earlier ω =

√
ω 2

0 − ( R
2L )2 differs by a very small

amount from ω0. For Q > 5, ω
ω0
≈ 1 − 1

8Q2 to an excellent approximation. At Q = 5 the ‘damping
redshift’ is only 0.5%, and the frequency for this case is so ill-defined, for the rapidly declining sinusoid,
that the shift is not measurable by spectral means. As noted earlier, to measure the shift by means
of a theoretical fit to the data, the bandpass of the electronics must be opened significantly, to avoid
distortion of the signal. This introduces Johnson noise that causes the residuals between theory and
experiment to be large. Again we find that the theoretical expression for the shift can not be validated.
Consequently, we deduce that the damping redshift is not practically meaningful.

We see from eq(6) that Q ∝ ω, the hallmark of viscous damping. The form of the equation is clearly
appropriate to the description of the RLC circuit, and also of some mechanical oscillators; where the
damping is dominated by viscous friction. On the basis of units alone, however, a problem is observed
with the use of eq(6) to model an oscillator dominated by hysteretic damping in which Q ∝ ω2.

3 Recent Internal Friction Discoveries

It is known from a variety of experiments, beginning with those of Kimball and Lovell [6], that with
hysteretic damping Q ∝ ω2. Even the studies of Gunar Streckeisen as a student, with a LaCoste spring
vertical seismometer, demonstrated hysteretic damping. Free-decay data that he collected (including
periods in excess of 100 s) show clearly that the damping of his instrument at lower frequencies was of
the form Q ∝ ω2 [7].

A number of recent experiments by Peters have demonstrated that hysteretic friction is fundamentally
nonlinear. Use of the modified Coulomb damping model [4] for this universal form of solid attenuation,
yields the following damped harmonic oscillator equation

ẍ +
π

4
ωd

Q

√
ω 2

d x2 + ẋ2 sgn(ẋ) + ω2x = 0 (7)

where the subscript d on ω identifies the drive frequency. For free-decay, the drive frequency is the
natural frequency ω of the oscillator; i.e., ωd → ω.

It can be shown for this equation of motion that Q ∝ ω2[8]. Using the orthogonality properties of
the harmonic functions, sine and cosine, it can also be shown that only the fundamental of the fourier
series describing the friction force is important in determining the log-decrement (and thus the Q) of an
exponential free-decay.

The friction waveform predicted by eq(7) is approximately a square wave, similar to Coulomb friction;
except that the amplitude of the friction force is proportional to the amplitude of the motion. The reason
for the π

4 term is that the fundamental of a square wave is the reciprocal of this quantity times the
amplitude of the wave.

A conceptual appreciation for the internal friction is realized by recognizing that it derives from
rearrangement of polycrystalline grains in the metal of a spring as it changes its strain state. In other
words, the anelasticity responsible for energy conversion to heat is the result of atomic rearrangements.
The amount of the inter-grain ‘sliding friction’ goes as the square root of the energy

E = 1
2m ẋ2 + 1

2mω2x2. It is seen from eq(7) that the effective friction force is proportional to
√

2E
m
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4 Importance of Hysteretic damping to a Seismometer

Strain of the spring in a vertical seismometer is inherent to the instrument’s function. If the spring
were of Hooke’s law (ideal) type, it would be frictionless. Real materials never obey Hooke’s law,
except perhaps for displacements measured in a few angstroms, as noted by studies using scanning
tunneling microscopes [9]. As the mass moves in (nearly) harmonic motion (assuming an ‘underdamped’
instrument) in response to an earth impulsive excitation, the spring of the seismometer cycles around
a hysteresis loop of stress versus strain. It should also be noted that the load bearing members of
a horizontal seismometer (whether of the ‘garden-gate’ (Lehman) variety or a folded pendulum, as
examples) also experience energy loss that is part of such hysteresis.

Although it is tempting to believe that friction effects have been virtually eliminated with the advent
of new sensor technologies, this is far from true. The enormous complexity that is observed, when one
looks carefully at the properties of a modern seismometer–results largely from the defect properties of
the spring that is the quintessential component of a vertical seismometer. We will see that stress-strain
hysteresis in this spring plays a critical role in determining the sensitivity of seismometers operating at
mHz frequencies.

A type of universal friction in which the effective force of resistance to the motion is independent
of frequency, hysteretic internal friction is responsible for an exponential free-decay. Its influence is so
similar to that of viscous damping, that it often is incorrectly labeled as linear in the velocity.

The zero-length LaCoste spring of earlier WWSSN instruments, has been mainly replaced by the
astatic spring of the modern seismometer (patented by Wielandt and used by Streckeisen) . A significant
mechanical amplification is realized by the use of these springs, allowing the instrument to become
highly sensitive to earth motions at frequencies in the range from 30 mHz to 10 Hz. They are sometimes
described as having sensitivity equal to a very long pendulum, assuming that adverse consequences of
the increased length are not an issue. The increased performance (when not limited by friction) is a
consequence of the fact that the sensitivity of an accelerometer to acceleration a is proportional to the
square of its natural period. This is easily demonstrated for the perfect (Hooke’s law) spring as follows:

F = − k x → Sens. =
∆x

∆a
= − T 2

4π2
= − 1

ω2
(8)

where the connection between spring constant k and period T = 2π/ω has been used (from the
solution to the equation of motion for the mass-spring simple harmonic oscillator without damping; i.e.,
mẍ + k x = 0).

As the period of oscillation lengthens, and the amplitude of motion decreases; a point is eventu-
ally reached where the mesoanelastic complexity of materials common to seismic instruments becomes
undeniably visible [10]. With softer (malleable) materials that are not suitable for the construction
of a seismometer, it is much easier to demonstrate the complexities, while operating at much larger
amplitudes[11].

This place of incipient complexity is the very place of increasing importance to geoscience– the place
where low-frequency earth dynamics involving ‘noise’ driven eigenmodes can be studied. Unfortunately,
it is also the very place where the mesodynamic properties of a seismometer make for complexity of
instrument dynamics. The response of the instrument to a stimulus is no longer the classical harmonic
oscillator with viscous (linear) damping. The system is more than simply nonlinear, such as to disallow
the use of convolution and thus transorm techniques in the mathematical treatment (superposition no
longer possible). Its behavior can be cause for much confusion, assuming that the earth motions we
wish to study are even detectable to begin with.

4.1 1/f Noise

Real systems can demonstrate ‘white’ noise, in which there is no frequency dependence. Examples
include (i) bit-resolution limitations of an analog to digital converter, and (ii) the bandpass noise of
thermal type in resistors of electronics; where it is referred to as Johnson noise.

Solid state electronic amplifiers show noise increase with decreasing frequency, in which a plot of dB
versus log frequency typically has a slope -1/f. It is thus referred to as 1/f noise. Of all noise types, this
is the one most universal.
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Other than very high-Q systems of non-metallic type, mechanical oscillators always demonstrate
1/f noise. Peters has postulated that this noise originates at the mesoscale [2]. It is a consequence
of mesoanelastic complexity having similarites to the Barkhausen effect (discrete; i.e., ‘jerky’ behavior
because of defects). The 1/f noise is generated as a consequence of the natural organizational charac-
teristics of these defects. To better appreciate the measurement conundrum resulting from the physics
of these processes, we now discuss self organized criticality.

5 Self-Organized Criticality

It is quite possible that seismologists were the first to seriously encounter self organized criticality (SOC),
because of the log-log graphics common to the representation of data influenced by SOC. A log-log plot
of earthquake frequency of occurrence versus earthquake magnitude (Gutenberg-Richter relationship)
is a classic example of the phenomenon that has become well known to the physics world through the
work of Bak, Tang, and Wiesenfeld[12].

Not only does the earth exhibit features of SOC at the megameter scale, but a seismometer exhibits
similar things at the centimeter scale. (This should not be a startling revelation to the reader, since
one of the hallmarks of SOC is its invariance to scale.) It is well known, for example, that transient
consequences of a major disturbance to an instrument must be allowed to ‘settle out’. The settling
process is one that involves creep, in which defects of the metal organize themselves in the direction
of a type of ‘stable’ point resisting further creep. Actually the acquired state is better described as
metastable, since a change in temperature or stress will, if sufficiently large, disrupt the ‘equilibrium’.
It is interesting that the SOC processes that are part of metastable attainment can be accelerated by
impulsive blows to the instrument. For example, Wielandt has mentioned how a seismometer may be
brought to operational status more quickly by hammering on the pier, “a procedure that is recommended
in each new installation”[1] (section “Transient disturbances” in “Instrumental self-noise”).

6 Force-balance versus ‘soft’ force-feedback

It is the opinion of this author that force-balance, of the type used in commercial seismometers, is detri-
mental to the instrument’s performance at low frequencies. Reasoning for this conclusion is related to
the matter of SOC. The granular properties of SOC are not readily observed at higher frequencies where
the energies of oscillation are large enough to average over many discrete events. At low frequencies,
internal friction, and especially its discrete character, becomes more important. It is believed that to
seriously constrain the mass from motion is to detrimentally hamper the mechanisms of SOC to which
the material tries to respond. Allowed to move, it naturally evolves toward regions of greater stability
that provide improved performance.

Although some feedback is necessary to keep an instrument from ‘going to the rails’ electronically
when operating at high sensitivity, it is hypothesized that the influence of mesoanelastic complexity
can be reduced by working with much smaller forces than those required for force-balance. To test
this hypothesis, an unconventional form of feedback was employed for use on a modified Sprengnether
instrument. The modified instrument is pictured in Fig. 1, and the capacitive sensor used in place of
the original (Faraday law) detector is pictured in Fig. 2. The damping subsystem used during operation
would normally also be visible in this picture. The forces employed in a force-balance instrument are
so large that no external source of damping is necessary. Placement in the complex-plane, of the pole
and zeroes of the network, is such that the feedback circuit itself causes the instrument to behave like
a classical instrument whose damping is close to the desired critical value. With the small feedback
forces of the modified Sprengnether it is necessary to supply a damper, in the form of an eddy-current
subsystem. It is a damper whose magnets were taken from a computer hard-drive, and they are held
together with a structure built of soft iron rectangular pieces of 1/4 in. thickness. Between the open
pole faces is a gap of about 2 mm, inside which a small copper sheet moves. This copper sheet was glued
on one end to the inside vertical face of the left lead-mass shown in Fig. 2. The sheet is thin enough,
and the width small enough, that it never mechanically contacts anything. With a length sufficient to
extend all the way through the pole face region, damping close to critical is realized.
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Although the Faraday law unit is still used, it is for an entirely different purpose than the original
design. It is now employed to function as an actuator. Its magnet housing (outer heavy ferrous cylinder
used for flux closure) is visible in the Fig. 1 photograph as the dark cylinder. Its companion coil (not
visible, surrounded by the ferrous housing), is wound on a plastic spool attached to the frame piece
with the big holes, that moves in concert with the two lead cylinders that constitute the inertial mass
of the instrument. The feedback provided by the capacitive sensor and the magnet/coil actuator is
unconventional, in that it does not use a derivative function. Unlike commercial instruments, which
use both differentiation and integration; the present feedback system uses only a long-time-constant
integration, as illustrated in Fig. 3.

Shown in Fig. 4 is a graph that compares instrument response below resonance, for sensors of either
(i) displacement type, or (ii) velocity type. The greater fall-off rate of the velocity sensor (additional 20
dB/decade) makes velocity sensing a poor choice for low-frequency purposes.

7 Capacitive Sensor

The sensor of this modified instrument is fully differential and patented in the U.S. with the name
“symmetric differential”[13]. As noted earlier, it functions on the basis of area variation, as illustrated
in Fig. 3. The grounded electrode that moves with the seismic mass, is situated between parallel static
electrodes. Charge cannot be induced through this grounded plate, so the four capacitors of the bridge
circuit change in symmetric manner, according to the position of the moving electrode. It is a ‘fully
active’ capacitive bridge that has been described by some as a form of ‘shadow’ sensor.

It can be shown that the sensitivity of an idealized symmetric differential capactive (SDC) sensor is
inversely proportional to the width of the moving electrode (analysis that ignores the influence of output
reactance in the Thevenin equivalent circuit). By shrinking this dimension toward zero, one could in
principle attain very high sensitivity. In reality, there is an opposing loss of sensitivity of capacitive type.
Because of the output capacitance of the sensor, and the input capacitance of the amplifier to which it
is connected; the sensitivity actually decreases as the indicated electrode dimension is decreased. This
results because the open-circuit voltage of the sensor is ‘divided’ between the sensor’s output capacitance
and the amplifier’s input capacitance.

The way to overcome the voltage-divider limitation is to work with an array and maintain the output
capacitance nearly fixed as the dimension is reduced. By placing several individual SDC detectors in
electrical-parallel, a large increase in sensitivity can be effected, as compared to a single capacitive unit.

The number of elements in the array is determined by the mechanical dynamic range of the instru-
ment (and one’s fabrication abilities). Since the amount of seismic mass movement is typically quite
small, the number could be made considerably larger than the six elements shown in Fig. 2. The small
number presently employed is a consequence primarily of the method of manufacture. The electrodes
were formed from printed circuit board; with various insulator strips generated by hand, using a file
and a straightedge to remove copper from the fiberglass backing. It is a testament to the versatility of
this sensor that it is able to perform remarkably well, in spite of the crudeness of its construction. The
truth of this statement will be demonstrated in example data records that follow.

To those with training in optics, the capacitive array may bring to mind various components that
work on the basis of interference. As the resolution of a multi-slit grating is greater than that of a pair of
slits (Young’s experiment); in somewhat similar manner, an array form of the SDC sensor has a greater
sensitivity than is possible with a single-element SDC sensor. Of course, the mechanical dynamic range
decreases proportionately, as the number of elements in the array increases. In the case of a seismometer,
the tradeoff between sensitivity and displacement range will be governed by the maximum displacement
of the seismic mass. If force balance were employed the range would be very small. As implied by
the premise of this article, larger range (in excess of 1 mm) will be allowed to improve low frequency
performance.
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8 Examples of Instrument Capabilities

All data were collected with the instrument resting on a pier that is unconventional. It comprises a (i)
fairly massive ‘composite table top’, sitting at its center on the flat-bottom (approx. 8-in dia.) of a (ii)
steel high-pressure bottled gas cylinder buried 4-ft vertically in the ground (inverted orientation).

The instrument has not been yet carefully calibrated, using an optical lever with the front-surface
mirror visible in Fig. 2. In previous studies, where the electronics was slightly different, the calibration
constant of the SDC position sensor was estimated to be 2000 V/m [14]. The present work is not so
concerned with the actual magnitudes of the low-frequency oscillations seen in the figures, but rather
with the fact they are observable.

All data were collected with a Dataq 700 (USB) 16-bit A/D converter, connected to a notebook
(Windows 98) computer. The noise properties of a notebook were found generally superior to that of
benchtop computers.

The more than score of figures which follow illustrate the low-frequency capabilities of the mod-
ifed Sprengnether. Any significant originality that may be ascribed to these figures derives from the
existence of the ‘synergetic triad’ that was part of their generation. This triad comprises: (i) a good sen-
sor/instrument, (ii) an adequate interface, and (iii) a powerful but user-friendly data analysis package.
The absence of any one of these three elements makes the generation of such figures impossible.

Although sensors have existed for years that could probably have been used in similar manner to
the present work, what was not possible a generation ago were a matched set of items (ii) and (iii).
Good interfaces existed more than a decade ago, in the form of A/D boards that slid into the case
of a desktop computer. The software, however, with which one studied the stored records produced
by these boards – was primitive. Generally, one had to write his/her own (dos) specialized code to
learn much of anything from those records. In this author’s fairly extensive experience, only with the
software/hardware combination sold by Dataq Inc., has the triad reached a mature state that far exceeds
earlier modus operandi.

All figures were produced with the Dataq software that comes free with all of their interface instru-
ments, starting with their $25 10-bit A/D converter. Their code is very user-friendly and ideally suited
to ‘exploratory’ analyses concerned with spectra. Especially useful is the means with which to easily
view a complete 24-h record by means of time-compression of the data. ‘Compression’, as presently
used, is equivalent to ‘input averaging’ in Dataq’s terminology.

Compression is necessary to identify low frequency oscillations that may be present in a record.
Typically, to identify such a mode, the amount of compression used would be an integer (odd) in the
neighborhood from 11 to 33. Likely places for the occurrence of such a mode are selected by first looking
at the ‘maximum’ compressed waveform. Going back and forth between a compression of 1 and the
maximum allowed by the software is trivial, using a ‘click of the mouse button’.

Once the code has been mastered, it is straightforward to do rapid analyses in either time or fre-
quency. The use of the FFT and its inverse permits easy manipulation of the data to include (i) low-pass,
(ii) high-pass, and (iii) band-pass filtering. Mastery is not especially difficult, being windows based. For
all time displays of the present document that involved filtering, it was the band-pass filter that was
used.

All data were collected at a sample rate of 8 per s, and all spectra were generated using the Hanning
window (apodizing function), working with 2048 pt Fast Fourier transforms. Where bandpass filtering
was employed, it was accomplished in two steps: (i) selecting the lower frequency cutoff of a ‘high-pass’
operation, followed by the inverse FFT, and (ii) selecting the higher frequency cutoff of a ‘low-pass
operation, followed by the inverse FFT.

The figures were generated by (i) screen-printing a given Dataq display to the clipboard of the
computer, and (ii) opening by ‘paste’ to the Windows routine ‘Paint’. For purpose of integration
into the latex document from which this pdf was constructed, they were saved from paint as a ‘jpg’.
Conversions were by means of code supplied with the freeware,‘miktex’.
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Figure 1: Long-period vertical seismometer, manufactured by Sprengnether, that was once part of the WWSSN.

10



Figure 2: Six-element area-varying capacitive array used as the sensor in the modified instrument.
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Figure 3: Electronics diagram for the modified Sprengnether.
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Figure 4: Bode plot showing why velocity detection is not used.

Figure 5: Compressed-time Record of Indonesian earthquake, 19 May 2005.
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Figure 6: Low frequency oscillation in interval between body-waves and surface waves.

Figure 7: Compressed Earthquake record, Revillagigedo Islands, 8 May 2005.
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Figure 8: Oscillation at 3.6 mHz following the Revillagigedo earthquake.

Figure 9: Compressed Earthquake record, Southeast Loyalty Islands, 11 April 2005.
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Figure 10: Oscillation at 1.7 mHz following the Loyalty Is. earthquake.

Figure 11: Clipped waveform of the very large Nias earthquake of 28 March 2005.
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Figure 12: Low frequency doublet in a ‘spectrum-pedestal’, bandpass center at 4.1 h after start of the Nias earthquake.

Figure 13: Compressed record with low-frequency activity prior to an earthquake.
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Figure 14: Earthquake (Kermadec Islands), following unusual pre-cursor activities (11.0 h after ‘event’).

Figure 15: One example of pre-earthquake oscillation (0.33 h after ‘event’).
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Figure 16: Second example of pre-earthquake oscillation (1.7 h after ‘event’).

Figure 17: Third example of pre-earthquake oscillation (6.6 h after ‘event’).
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Figure 18: Oscillation before arrival of the surface waves (10.6 h after ‘event’).
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Figure 19: 24-h record during period of minimal earthquake activity, yet showing many low-frequency oscillations.

Figure 20: The first-noted low frequency oscillation of fig.(19).
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Figure 21: The second-noted, low frequency group of oscillations, of fig.(19).

Figure 22: The third-noted low frequency oscillation of fig.(19).
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Figure 23: The fourth-noted low frequency oscillation of fig.(19).

Figure 24: The fifth-noted low frequency oscillation of fig.(19).
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