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Abstract Following a treatment of the simple pendulum provided in Appendix A,
a rigorous derivation is given first for the response of an idealized rigid compound
pendulum to external accelerations distributed through a broad range of frequencies. It
is afterward shown that the same pendulum can be an effective sensor of rotation, if
the axis is positioned close to the center of mass.

Introduction

When treating pendulum motions involving a noniner-
tial (accelerated) reference frame, physicists rarely consider
the dynamics of anything other than a simple pendulum.
Seismologists are concerned, however, with both instruments
more complicated than the simple pendulum and how such
instruments behave when their framework experiences accel-
eration in the form of either translation or rotation. Thus, I
look at the idealized compound pendulum as the simplest
approximation to mechanical system dynamics of relevance
to seismology. As compared to a simple pendulum, the prop-
erties of a compound pendulum can be radically modified
according to the location of its axis relative to the center
of mass.

Pendulum Theory

The Simple Pendulum

The theory of the simple (mathematical) pendulum is
provided in Appendix A.

Theory of an Exemplary Compound Pendulum

When an external force is applied to an extended object
whose shape is invariant, it generally causes two responses:
a linear acceleration of the center of mass and a rotational
acceleration around the center of mass. For this system, New-
ton’s laws of translation and rotation are applied respectively
to each response. The coupled-equation sets obtained from
these two forms of the law are then combined to obtain the
single equation of motion. This method will be used to ana-
lyze the compound pendulum described next.

As noted, we are concerned with small displacements,
where the drive acceleration is rarely large enough to gener-
ate amplitudes in excess of 1 mrad. Thus, the nonlinear in-
fluence of the sin θ term is inconsequential; that is, the
instrument is nearly isochronous (sin θ≈ θ and cos θ≈ 1).

Figure 1 shows a pendulum similar to various instru-
ments of importance in seismology. It is a true pendulum

in the sense that restoration is due to the gravitational field
of the Earth at its surface, little g. Some other instruments
common in physics and sometimes labeled pendulums do
not employ a restore-to-equilibrium torque based on the
Earth’s field. For example, restoration in the Michell–
Cavendish balance that is used to measure big G (Newtonian
universal gravitational constant) is provided by the elastic
twist of a fiber (TEL-Atomic, Inc., 2008). It is sometimes
called a torsion pendulum. Many seismic instruments are
also called pendulums, even though restoration may be
mostly provided by a spring. Two commonly employed
spring types are the LaCoste zero-length and the astatic.
As discussed in Appendix B, the rotation response at low
frequencies of a spring-restored oscillator is significantly dif-
ferent from that of a gravity-restored pendulum.

While the fiber of the Cavendish balance is secured only
at the top, other torsion pendulums use a vertical fiber that
is also secured at both ends. The best known example from
seismology is the Wood–Anderson seismograph, used by
Richter to define the original earthquake magnitude scale.
By means of an adjustable period, a similar instrument can
be configured to operate with large tilt sensitivity (Peters,
1990). As with any long-period mechanical oscillator, the
maximum period (and the maximum sensitivity) of the tilt-
meter is regulated by the integrity of its fiber spring. Accept-
able stability against spring creep is difficult to achieve when
the period is greater than about 30 sec (de Silva, 2007). A
common seismology instrument for which the challenge
to long-period stability is well known is the garden-gate hori-
zontal pendulum. Rodgers (1968) recognized its potential for
a variety of measurements.

Although the instrument in Figure 1 is idealized in the
form of a two-element compound pendulum, it nevertheless
is useful for illustrating a variety of important properties. The
primary idealization is the assumption of a rigid structure.
For reasons of material creep, and the placement of mass
M1 above the axis, real pendulums of this type experience
structural deformation. In the absence of integrity sufficient
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to maintain an essentially rigid structure, the center of mass
of M1 migrates slowly toward ever lower states of potential
energy. Even though the rate of this deformation may be
low, the rod will, through secondary creep, continue to bend
about the axis. Upon initial setup and until primary creep
has run its course, the equilibrium position of such an instru-
ment is not fixed, not even for the highestQmaterials used in
fabrication.

The defect structures responsible for creep also result in
hysteretic internal-friction damping. Ignore for the moment
the force Fe. As the pendulum oscillates between positive
and negative displacements, the three forces R, M1g, and
M2g are responsible for a periodic flexural strain of the pen-
dulum arm and pivot. We will not consider here the detailed
physics whereby this strain lags behind an associated stress
in the rod. Peters (2005a) shows how the Q of the system is
naturally proportional to the square of the eigenfrequency.
This proportionality results from the flexural interplay be-
tween the restoring M2g and the destoring M1g. This prop-
erty also allows one to tune the oscillator to a long period, by
increasing M1 or δ, and thus causing the center of mass to
approach the axis. Subsequently, I show that this method can
be used to convert the pendulum from an instrument more
sensitive to translational acceleration into one that is more
sensitive to rotation about O.

Newton’s second law requires that the vector sum of the
forces external to the pendulum must be equal to the total
mass M � M1 �M2 times the acceleration of the center of
mass acm. Additionally, the vector sum of external torques
acting on the center of mass is equal to the moment of inertia
about that point, Icm, times the angular acceleration, d2θ=dt2.

The axis at O is stationary in the accelerated frame of
reference in which the instrument is located. This axis is ac-
celerating in the negative x direction because of the horizon-
tal force Fe acting through the axis. This external force and
the reaction force R are input from the ground via the case
that supports the pendulum. The force R balances the weight
of the pendulum when it is at equilibrium with Fe � 0. Be-
cause we are concerned with motions for which θ ≪ 1, we
quickly identify the first of several expressions used to de-
velop the equation of motion: �M1 �M2�g≈ R.

For various calculations, a convenient reference point is
the top of the uniform rod of mass M2 and length L. Unlike
the rod, M1 that is placed above the axis is dense enough to
be approximated as a point mass. For the purpose of torque
calculations, the total mass of the pendulum is concentrated
at the center of mass, whose position below the reference
position at the top of the rod is indicated as dc in Figure 1.
Newton’s law for translational acceleration of the center of
mass and small rotation about the center of mass yields

�Fe ≈Macm; M � M1 �M2 (1)

and

�dc � d��Fe � Rθ�≈ Icm �θ: (2)

An additional relationship required to obtain the equation of
motion without damping involves the transformation from
the center of mass frame to the axis frame,

acm ≈ �dc � d��θ� a�t�; (3)

where a�t� � aaxis is the acceleration of the ground respon-
sible for the pendulum’s motion.

Combining equations (1) to (3) with �M1 �M2�g � R
one obtains

�Icm �M�dc � d�2��θ� �dc � d�Mgθ≈ ��dc � d�Ma�t�:
(4)

Because of the parallel-axis theorem (Becker, 1954), the term
in brackets multiplying the angular acceleration is recog-
nized to be the moment of inertia I about axis O.

Up to this point I have ignored the effects of frictional
damping. In the conventional manner a linear damping term
is added to equation (4) to obtain the following linear ap-
proximation for the equation of motion of this compound
pendulum:

Figure 1. A compound pendulum used to illustrate some prop-
erties of interest to seismometry. Force vectors are shown that act on
both the pendulum and its axis. c.m stands for center of mass; c.p.
stands for center of percussion.
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The equation is seen to be identical to that of the driven
simple pendulum (equation A3, given in Appendix A, except
with a drive term added to the right-hand side, and the
expression for its eigenfrequency is considerably more
complicated).

Radius of Gyration

It is common practice in physics and engineering to ex-
press the moment of inertia of a rigid object in terms of a
length ρ called the radius of gyration and defined by

I � Mρ2: (6)

In keeping with this convention, we find for the compound
pendulum just described
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The distance ξ0 � �dc � d� of axis O above the center of
mass has a conjugate point called the center of percussion
that is located a distance ξ below the center of mass; these
points obey the relation

ξ0ξ � ρ2cm: (8)

As demonstrated in textbooks of mechanics (e.g.,
Becker, 1954, pp. 213), an impulsive force delivered perpen-
dicular to the equilibrated pendulum at the center of per-
cussion imparts no motion to the axis. An example of this
phenomenon is the sweet spot of a baseball bat. When the
ball is hit at that point there is no counter force to the batter’s
hands. For drive frequencies higher than the eigenfrequency,
a sensor located at the center of percussion measures pendu-
lum displacement equal in magnitude and π out of phase with
the displacement of sinusoidal ground motion.

Determining the center of percussion allows one to de-
fine an effective (i.e., an equivalent simple pendulum) length
by means of the following relationship:

ξ � ξ0 � Leff ; (9)

where Leff corresponds to the length of a simple pendulum
having the same period as the compound pendulum. For the
present compound pendulum
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It should be noted from equation (10) that d � dc cannot be
exceeded. Displacement greater than this value places the
axis below the center of mass, resulting in an unstable in-
verted pendulum. In turn, it should also be obvious that the
center of percussion moves below the bottom end of the rod,
once a critical value of d has been exceeded. In the case
where M1 equals zero, a rod-only pendulum, instability oc-
curs when d > L=2. Various properties of such a rod-only
pendulum with L � 1 m are shown in Figure 2.

The plots of Figure 3 are of similar type to those of Fig-
ure 2 but using an M1 whose mass and placement yield the
advantages described in Appendix C

Some Pendulum Characteristics

Appendix C describes some of the characteristics of
the compound pendulum treated previously, including:
(1) advantages of a pendulum with M1 ≠ 0, (2) frequency
dependence of the sensitivity to drive acceleration at low-
and high-frequency limits, and (3) properties of the center
of oscillation. The center of oscillation should not be con-
fused with the center of percussion; only at high-excitation
frequencies are the two points identical.

Transfer Functions

I now describe the transfer function of various pendu-
lums, a continuous curve joining the two limiting frequency
cases discussed previouisly. One is concerned with the
steady-state response of the pendulum as described by com-
plex exponentials. The result for the simple pendulum was
given without derivation in equations (A7) and (A8) of Ap-
pendix A.

I now obtain the analogous results for the compound
pendulum of Figure 1. The functions are derived using
the Steinmetz phasor approach involving complex exponen-
tials (Newburgh, 2004). The right-hand side of the equation
of motion, equation (5), is written as �ω2

0=g�a0;groundejωt,
where j � ��1�1=2. For the entrained pendulum at steady
state, its frequency is also ω and after taking the derivatives
of the left-hand side of equation (5), we obtain the following
expression, after dividing through by the common term ejωt:

�ω2θ0 � j
ωω0

Q
� ω2

0θ0 � �ω2
0

g
a0;ground: (11)

By rearranging equation (11) and solving for the magnitude
and the phase, one obtains
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The phase term ϕ in equation (12) is plotted in Appendix A
for two different values ofQ. The pendulum and the drive are
in phase when the drive frequency is much lower than the
natural frequency. At the high-frequency extreme, the pen-
dulum lags behind the drive by π.

The magnitude of the transfer function shown in equa-
tion (12) is appropriate to an instrument that measures the
angular displacement of the pendulum. For an instrument
that measures translational displacement of a point on the
pendulum at some fixed distance from the axis, the equation
is readily modified. For example, placement at the bottom of
the rod yields
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�
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0�����������������������������������������������
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0ω
2=Q2

p : (13)

Displacement Transfer Function

The displacement transfer function of a compound
pendulum is generated from the relationship between accel-
eration and displacement, that is, a � �ω2A:
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L
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1 � d

L

�
ω2�����������������������������������������������

�ω2
0 � ω2�2 � ω2

0ω
2=Q2

p ; (14)

where the displacement implied by equation (14) is the hori-
zontal displacement of the bottom end of the compound
pendulum relative to the instrument case. The transfer func-
tions expressed by equations (13) and (14) are plotted in Fig-
ure 4 for the special case of the compound rod pendulum.

Pendulum Measurement of Tilt and Rotation

The response of the compound pendulum to rotation is
treated in Appendix B. This appendix provides quantitative
support for the claim that the pendulum of Figure 1 can be
made sensitive to rotation while simultaneously insensitive
to translational acceleration. As seen from the upper right-
hand plot of Figure 3, moving the axis closer to the center
of mass can readily cause the pendulum’s effective length to
become more than 30 times greater than the actual length of

Figure 2. Properties of a meter-stick (rod) simple-compound pendulum. The graphs were generated with equation (10) using M1 � 0
and L � 1.
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the pendulum. In the process, equation (14) shows that the
displacement response derived from translational accelera-
tion diminishes. Because the rotational response is indepen-
dent of the effective length, the relative response can become

quite large. Figure 5 shows a 50-fold reduction in transla-
tional sensitivity for this case in which the center of mass
is located 1 mm below the axis.

Unconventional and Exotic Pendulums

Unconventional or exotic pendulums, such as the ones
described in Appendix D, create additional complexities and
useful phenomena.

Conclusions

Depending on geometry, compound pendulums can
display many different types of responses. The single case
treated previously, an idealized compound pendulum, pro-
vides a quantitative example. In addition to their diversity,
gravity-restored pendulums can be remarkably simple, com-
pared to many instruments widely used in seismology.

I have spent many years conducting pendulum research.
In the course of two decades of intense study, I have come to
the following conclusion—the classical pendulum should
not be viewed as a relic. With modern digital technology,

Figure 3. Properties of the two-component compound pendulum of Figure 1 for the parameters as indicated. For no value of d=L is the
center of percussion located on the body of the pendulum.

Figure 4. Acceleration and displacement transfer functions
based on equations (13) and (14) using d � 0, M1 � 0, and
Q � 0:7.
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the pendulum has provided insights into several old founda-
tional problems, such as the internal friction of metals, as
well as issues more directly applicable to seismometry. Con-
sideration of classical pendulums was extensive in the early
days of seismometry, and modern seismologists would do
well to take another look because improvements in tech-
nology have opened up new possibilities. For a variety of
applications (including Earth rotation studies) the advan-
tages of its low cost and high performance make this solu-
tion viable.

Data and Resources

No data were used in this article. Figures were made
with Microsoft Excel for plots and Microsoft Paint for
drawings.
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Appendix A

The Simple Pendulum

The simple pendulum (sometimes called a mathematical
pendulum) is a convenient starting point for the considera-
tion of pendulums in general. A simple pendulum comprises
an inextensible, massless string of length L that supports a
point mass m on one of its ends (Fig. A1). The other end of
this string is the pendulum axis, a fixed stationary point
whenever the instrument is located in an inertial coordinate
frame. In addition to the only external force of significance
(mg in Fig. A1), a tension force T is also shown. It has no
component with which to influence the pendulum’s motion;
however, it must at all times balance the component of the
bob weight along the direction of the string (unit vector r).
As the pendulum swings, this tension force varies periodi-
cally and would cause a variation in L if the string were ex-
tensible. The reaction to this tension force, acting at the top
of the string, also would cause periodic sway in the case of
any real pendulum. This sway can lengthen the period of os-
cillation and also give rise to hysteretic damping.

This idealized instrument is not achievable in practice,
but the system is pedagogically useful and constitutes a use-
ful benchmark against which real systems can be compared
and numerically evaluated.

First we discuss the homogeneous equation of a sim-
ple pendulum’s motion and then what happens to the dy-
namics of the pendulum when its axis experiences external
accelerations.

Newton’s second law is the basis for treating both the
simple pendulum and the other instruments considered later.
This law is best known to students in the special-case form
F � ma, where the vector F is the sum of all external forces
acting on scalar point mass m experiencing linear accelera-
tion vector a as the result of F. The acceleration thus calcu-

lated is valid only if m is constant. Newton actually provided
this law in its general form, which says that the time rate of
change of the vector momentum of an object is equal to the
net external vector force acting on the object. This reduces to
F � ma for constant m.

For systems like a symmetric pendulum that experiences
rotation, the angular vector acceleration α is related to the
net vector torque τ by way of Newton’s second law of rota-
tion in the form τ � Iα. The scalar moment of inertia I is
specified relative to the axis, which in Figure A1 is the origin
O. Because the string is massless, I � mL2. The magnitude
of the angular acceleration is the second time derivative of θ
or d2θ=dt2. In the equations that follow, Newton’s time de-
rivative convention is followed, namely that one dot over the
variable designates the first time derivative and two dots, the
second time derivative. As with F � ma, τ � Iα is a special
case. The general form of his rotational law says that the time
rate of change of vector angular momentum equals the net
external applied vector torque.

Because it is not an extended body in the usual sense, a
simple pendulum is very easily treated using Newton’s sec-
ond law in the form of rotation. To begin with, following
initialization at θ0 ≠ 0, let the pendulum be swinging in free
decay in an inertial coordinate frame (Fig. A1). For positive
displacement θ corresponding to a specific time (the θ direc-
tion is along the z axis), the torque due to gravity at that in-
stant is given by

τ � Lr̂ ×mg � I�θ ẑ; (A1)

where the caret (hat) over a variable indicates that it is a
unit vector. After evaluating the vector cross product, equa-
tion (A1) reduces to the following expression in terms of
magnitudes:

mL2 �θ�mgL sin θ � 0: (A2)

The equation of motion of a simple pendulum is in general
nonlinear because of the sine term in equation (A2). Unlike
archtypical chaotic pendulum motion (Peters, 2007), in seis-
mology applications θ0 ≪ 1 rad is nearly always an accept-
able approximation. It should be noted that the pendulum of
Figure A1 cannot exhibit chaos because the string supports
only tension; this simplification disallows winding modes
(θ > π) that are part of chaotic motion.

We have assumed that the restoring force is due to a uni-
form Earth gravitational field of magnitude g≈ 9:8 m=sec2,
and that Coriolis acceleration due to the rotating Earth is neg-
ligible. If energy is supplied to a simple pendulum to offset
its damping, and if the pendulum is located somewhere other
than the equator, then the plane of its oscillation is steadily
altered because of the Earth’s rotation. Aczel (2004) provides
a fascinating account of Leon Foucault’s invention of this
famous pendulum. For pendulums of a type common to seis-
mology, physical constraints against axis rotation make the
Coriolis influence inconsequential for most purposes. For aFigure A1. Geometry of the simple pendulum.
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pendulum whose effective length is an appreciable fraction
of the Earth radius, such as the Schuler pendulum (Aki
and Richards, 2002), the uniform-field approximation is
not valid.

Although not shown in Figure A1, further assume that
the only other external force acting on the pendulum is one
of frictional retardation, viscous damping. With all these
approximations, the equation of motion for the nondriven
simple pendulum takes on the simple linear form

�θ� ωo

Q
_θ� ω2

oθ � 0; ω2
o � g

L
: (A3)

This simple-harmonic-oscillator-with-viscous-damping
equation is the heart of linear-approximate models of the
pendulum and many other mechanical oscillators. It is ap-
plicable to the pendulum only to the extent that sin θ≈ θ
is acceptable and also that its loss of oscillatory energy
derives from damping friction that is proportional to the first
power of the velocity. With damping included in the equation
of motion

τ � �Lc_θ �mgL sin θ � mL2 �θ; (A4)

where c_θ is the viscous friction force, assumed proportional
to the angular velocity through the coefficient c, acting on the
bob of mass m at a distance L from the axis. It should be
noted that c is not always constant (Peters, 2004).

The adjective “mathematical” is appropriate to describe
a simple pendulum because real instruments are never as
simple as the assumptions made concerning its structure.
In addition, a damping term proportional to the velocity does
not fully describe the behavior of real oscillators.

The first person to introduce viscous damping to the
simple harmonic oscillator may have been physicist Hendrik
Anton Lorentz (1853–1928). Neither Lorentz nor George
Gabriel Stokes (1819–1903) treated the viscous model as
loosely as has been common in recent years (Peters, 2005a).

The quality factor is defined by Q � �2πE=ΔE, where
E is the energy of oscillation and ΔE is the energy lost per
cycle due to the damping. One can easily estimate Q to a few
percent from an exponential free decay as follows. After ini-
tializing the motion at a given amplitude, count the number
of oscillations required for the amplitude to decay to 1=e≈
0:368 of the initial value. Q is then obtained by multiplying
this number by π.

For linear viscous damping, a simple relationship exists
between Q and the damping (decay) coefficient β, used with
the exponential to describe the turning points of the motion
through exp��βt�:

Q � ωo

2β
� ωo

mL

c
: (A5)

It should be noted that if β were a constant, then Q would be
proportional to the natural frequency f0 through ω0 � 2πf0.
As demonstrated by Streckeisen, circa 1960, (E. Wielandt,

personal comm., 2000) with a LaCoste-spring vertical seis-
mometer, the Q of practical instruments is not proportional
to f0. At least for instruments configured to operate with a
long-natural period, the proportionality is one involving f20.
For these systems, the damping derives from internal friction
in spring and pivot materials, and the best simple model is
nonlinear (Peters, 2005a). Although it involves the velocity
only by way of algebraic sign, this form of damping is non-
linear, even so resulting in exponential free decay. Although
the coefficient β may be reasonably called a damping coeffi-
cient, it is not proper to call it a damping constant, because it
is not constant but varies with frequency.

Swinging in a fluid such as air, a real pendulum experi-
ences two drag forces, one acting on the bob and the other
acting on the string. This problem was first treated analyti-
cally by Stokes (1850), originator of the drag-force law f �
6πηRv for a small sphere of radius R falling in a liquid at
terminal velocity v in a fluid of viscosity η. However, this
equation does not in general allow an accurate theoretical
estimate of Q based simply on the fluid’s viscosity. Stokes’
law can be used only when working with very small parti-
cles. In particular, for a macroscopic pendulum,the Reynolds
number is generally too large to allow its use. In most cases
the air influence must include a quadratic velocity term as
well as the linear term assumed for equation (A3) (Nelson
and Olsson, 1986). In other words, even air damping is not
necessarily linear.

In the case of extended rigid bodies undergoing periodic
flexure during oscillation, several damping mechanisms gen-
erally are present. Internal friction in pivot and structure usu-
ally contributes significantly, sometimes dominantly (Peters,
2004). The net quality factor describing the decay is given by

1

QNet
� 1

Q1

� 1

Q2

� � � � ; (A6)

where it is seen that the damping mechanism with the low-
est quality factor dominates. Only for those mechanisms
that give rise to exponential decay is Q independent of
the pendulum’s amplitude. With quadratic-in-velocity fluid
damping, the amplitude trend of Q is opposite to that of
Coulomb friction. Unlike hysteretic and viscous damping,
neither of these nonlinear mechanisms yields an exponential
free decay.

The subscript zero used with ω in equation (A3) is a
natural consequence of the mathematical solution to the dif-
ferential equation. A subscript corresponding to the eigen-
frequency of the pendulum in the absence of damping
(Q → ∞) is used to distinguish this value from the red-
shifted frequency when there is damping; that is, ω �
�ω2

0 � β2�1=2. This redshift is negligible except, perhaps
where the pendulum damping is near critical (Q≈ 0:5).
When internal-friction hysteretic damping is the dominant
source of damping, the redshift has no meaning because
there is no mechanism to cause it (Peters, 2005a).
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Fortunately, when seismic instruments are operated with
near-critical damping (Q � 1=

���
2

p
), the assumption of linear

viscous damping is for many purposes adequate. Such is the
case, for example, when eddy-current damping is employed.
It is also true for damping provided by force-balance feed-
back. In general, however, the damping of an instrument is
not governed by a linear equation of motion.

The Driven Simple Pendulum

When the axis of the pendulum undergoes accelera-
tion a�t�, application of Newton’s laws shows that the zero
on the right-hand side of equation (A3) simply is replaced
by �ω2

0a�t�=g. Conceptual understanding of this term is
straightforward. Given that the effect of acceleration a and
gravitational field g are indistinguishable to the pendulum
(it measures acceleration at one location only) and that at
equilibrium in the absence of a the string is oriented along
the direction of the acceleration vector g from the Earth’s
gravity, then when there is a constant acceleration a of the
case perpendicular to g the string now aligns itself with the
vector sum g � a. If g could be set to zero, alignment would
be with�a. Thus, the magnitude of the pendulum deflection
angle (for a ≪ g) is given by θ � a=g. The same result ap-
plies for a harmonic acceleration whose frequency is signifi-
cantly less than the natural frequency of the pendulum. For
such an excitation, the derivative terms in the left-hand side
of the equation of motion are negligible. In turn it is recog-
nized that �a=g must be multiplied by ω2

0 to obtain the right-
hand side of the now inhomogeneous equation.

Using complex exponentials to describe the steady-state
response to harmonic excitation (a pendulum entrained with
the drive after transients have settled) yields

���� gθ0
a0;ground

����� ω2
0���������������������������������������������

�ω2
0 � ω2�2 � ω2

0ω
2=Q

p ; (A7)

where a0;ground is the amplitude of the pivot’s acceleration
a�t� and is responsible for the angular displacement ampli-
tude of the pendulum θ0. We refer to equation (A7) as the
magnitude of the acceleration transfer function of the sim-
ple pendulum, expressed in terms of angular displacement.
Other transfer function forms are also considered in this
article. Such functions are always a complex steady-state di-
mensionless ratio. Although axis (pivot) acceleration is the
state variable responsible for exciting the pendulum, it is pos-
sible to define transfer functions in terms of the other state
variables.

I next examine the ratio of the displacement of the pen-
dulum bob to the displacement of the accelerating ground.
Because this ratio is complex, it has both a magnitude
and a phase. Alternatively, this transfer function could be de-
scribed in terms of its real and imaginary components though
this is rarely done in seismology.

For frequencies above ω0 it is frequently convenient
to work with the displacement transfer function, with
magnitude

����Apendulum

Aground

����� ω2���������������������������������������������
�ω2

0 � ω2�2 � ω2
0ω

2=Q
p ; (A8)

where for the simple pendulum Apendulum is the amplitude of
the bob’s displacement, and Aground is the amplitude of sinu-
soidal ground motion of frequency ω. Figure A2 gives plots
of both these transfer functions for quality factorQ � 1=

���
2

p
;

Figure A3 shows the phase variation.

Appendix B

Tilt and Rotation

Pendulum Tilt Due to Seismic Surface Waves

The early history of seismometry involved a controversy
about tilt (Dewey and Byerly, 1969). Using a simple calcula-
tion along with equation (5) in the body of this article, I show

Figure A2. Simple pendulum acceleration response and dis-
placement response as a function of drive frequency (Q � 1=

���
2

p
).

Figure A3. Lag angle of the pendulum, relative to the drive (the
case of the instrument), as a function of drive frequency; two dif-
ferent Q-values are shown.
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that tilt influence on a pendulum (due, for example, to a sur-
face seismic wave) is negligible compared to the influence of
the wave’s acceleration components unless the frequency of
the wave is very low. For a surface Rayleigh wave having
amplitude A, such that

y�x; t� � A sin�kx � ωt�; k � 2π
λ
; ω � 2π

T
;

(B1)

then the maximum of the spatial gradient in a linear elastic
solid is given by

∂y
∂x

����
max

� kA � 2πA
λ

� jθjtilt; (B2)

the amplitude of the pendulum response to the harmonic tilt-
ing that occurs when the wave passes. For ω less than the
pendulum’s natural frequency ωo, one finds from equation (5)
in the body of this article that the acceleration response of the
pendulum is

jθaccelj �
ω2A

g
: (B3)

Thus, the ratio of tilt-to-acceleration response is

���� θtiltθaccel

����� gT

2πv
; (B4)

where v is the phase speed of the surface wave. From equa-
tion (B4) it is seen that the period of the wave must exceed
2πv=g for the tilt influence to become greater than the accel-
eration influence. The crossover period is actually about 50%
smaller than the value calculated because the vertical ampli-
tude of particle motion in a Rayleigh wave is roughly 50%
greater than the horizontal amplitude. For a wave speed of
2500 m=sec, the crossover period is about 800 sec, beyond
which tilt dominates instrument response.

It should be noted that significant deviations in the di-
rection of the Earth’s gravitational field occur at frequencies
below about 1 mHz as the result of eigenmode oscillations
(normal modes). Although the magnitude variations in g are
exceedingly small, the direction changes in g are readily
measured with a pendulum acting as a tiltmeter and using
a displacement sensor. As will be seen in the discussion of
sensor choice, a velocity sensor is not well suited to such
measurements. Although the next section is concerned with
pendulum measurement of rotation, it should be understood
that tilt from Earth normal modes is a special case of rotation
in which the direction of the Earth’s field changes for an in-
strument located along a line of nodes. This matter is impor-
tant because of the need to better understand the mechanisms
of Earth hum, which is comprised of such modes. Along with
my student M. H. Kwon, around 1990 I accidentally ob-
served persistent oscillation components corresponding to
the lowest eigenmode frequencies of the Earth. These ob-

servations were made with a pendulum similar to that of
Peters (1990), which was designed for surface-physics re-
search. The results were documented by Kwon (Kwon and
Peters, 1995).

Pendulum Sensing of Rotation

There is a significant difference in the rotational equa-
tion of motion for a pendulum that is restored by a spring, as
opposed to a pendulum that is restored by the Earth’s gravi-
tational field. Although spring-restored instruments could be
used in some cases for measurements in all three axes needed
to completely specify the Earth's motion, there is a signifi-
cant advantage at low frequencies to using gravity-restored
instruments for the horizontal axes; measuring rotation
around the local vertical axis requires a spring-restored pen-
dulum. The equations developed by Graizer (2006) are re-
stricted in applicability to a spring-restored instrument.

Here we consider a gravity-restored pendulum having an
effective length Leff . The homogeneous part (left-hand side)
of the equation of motion is identical to equation (5) in the
body of this article. Excitation of the pendulum relative to an
inertial coordinate frame can only arise from work done by
the damping force. In the absence of damping, the pendulum
would remain stationary in the inertial frame, while the case
holding the instrument oscillated around a horizontal axis.
Responding to relative motion between the pendulum and
case, the output from the sensor would be the negative of
the case motion θ in that inertial frame. With damping, there
is motion of both the case and pendulum, and their differ-
ence ϕ is what is measured by the sensor. This motion is
governed by

�ϕ� ωo

Q
_ϕ� ω2

oϕ � � �α � ω2
oα; ω2

o � g

Leff
; (B5)

where the Earth rotation variable α is the time varying ori-
entation of the case relative to a horizontal axis in the inertial
frame. For a pendulum that is spring restored, the right-
most term of the right-hand side of equation (B5) is missing.
It should also be noted (Graizer, 2006), that triaxial instru-
ments of this type generally show cross coupling between
orthogonal axes. As before, we can readily predict from
equation (B5) the response for both the low- and high-
frequency limits. Unlike equation (5) in the body of this
article, these limiting cases prove to be identical:

ϕ � �α; for ω ≪ ωo and also for ω ≫ ωo: (B6)

The full transfer function, obtained as before using the
method of Steinmetz phasors, is given by

����ϕo

αo

����� ω2
o � ω2������������������������������������������������

�ω2
o � ω2�2 � ω2

oω2=Q2
p ;

phase � � tan�1
ωoω

Q�ω2
o � ω2� :

(B7)
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The place where the transfer function differs from ϕ � �α
is in the vicinity of the pendulum’s resonance frequency,
where a decline in sensor output occurs. For high Q, the
near-resonance steady-state decline of the response is nar-
row. As Q decreases, the width of the region of declination
gets larger, as illustrated in Figure B1.

Response, Rotation Compared to Acceleration

The pendulum of Figure 1 in the body of this article can
be made sensitive to rotation and simultaneously insensitive
to acceleration. As seen from the upper right-hand plot of
Figure 3 in the body of this article, moving the axis close
to the center of mass causes the pendulum’s effective length
to be significantly greater than the actual length of the pen-
dulum. In the process, it is seen from equation (14) in the
body of this article that the displacement response derived
from linear acceleration drops. Because the rotational re-
sponse is independent of the pendulum’s effective length,
its sensitivity remains unchanged while the acceleration re-
sponse is dramatically reduced.

Choice of Sensor

A truly broadband sensor for measuring all Earth mo-
tion is a practical impossibility. Force-balance seismographs,
such as those built by Gunar Streckeisen, come as close to
this ideal as any. Because these instruments employ velocity
sensing, there is a commensurate loss in very low-frequency
sensitivity, as can be understood from Figure B2. As can be
seen in that figure, if all other things are equal a velocity sen-
sor will outperform a position sensor when detecting Earth
motions with characteristic frequencies higher than the natu-
ral frequency of the seismic instrument. A position sensor is
superior for detecting Earth motions with frequencies lower
than the natural frequency of the instrument.

Appendix C

Some Pendulum Characteristics

Kater Pendulum

The rod-only pendulum is useful for recognizing a his-
torically significant property important to precision measure-
ments of g, Earth gravitational acceleration, according to the
method of Kater (Peters, 1999). When restricted to measure-
ments involving a single axis of rotation, the accuracy with
which the effective length of a pendulum can be measured
is limited. This limitation is removed by using a pendulum
whose motion is measured for two different, conjugate axes.
The pendulum oscillates with the same period when a given
first axis is replaced by a second parallel axis passing through
the center of percussion calculated from the position of the
first axis. The system is equivalent to a simple pendulum of
length equal to the distance between the two axes, which can
be measured very accurately. The method was used (taking
an average of six Kater pendulums) to measure the absolute
reference for the Earth's field in Potsdam, Germany, in 1906
(National Geodetic Survey, 1984).

Figure B1. Rotational pendulum transfer function magnitude
(upper graph) and phase angle in radians (lower graph).

Figure B2. Instrument-self-noise PSD plots of importance to
the choice of a sensor. The curves were generated using equa-
tion (12) in the body of this article.
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Advantages of a Pendulum with M1 ≠ 0

Compared to a pendulum of the type shown in Figure 1
in the body of this article, where much of the total mass is
concentrated in the dense upper component, M1, the me-
chanical integrity of a rod-only pendulum is significantly
lower. To obtain the long periods needed for rotational
sensing, the axis must be positioned close to the center of
the rod. The portion above the axis that results, almost
L=2 in length, is subject to considerable creep deformation
(Peters, 2005b).

Of course the other disadvantage of the rod-only config-
uration involves the greater size of the instrument. Reducing
the height by means of a concentrated upper mass allows a
smaller size and reduced cost for the instrument’s case. Ad-
ditionally, the smaller case reduces air-current disturbances
due to convective circulation.

Frequency Dependence of Sensitivity

The response of a pendulum is quite different when
the drive acceleration at the axis is at an angular frequency
significantly lower than or higher than the eigenfrequency.
The extremes of these two cases are readily treated by a
visual inspection of the equation of motion. From equa-
tion (5) in the body of this article we can readily deduce
the following:

Low-Frequency Sensitivity Limit

When the drive frequency is very low, the first and sec-
ond time derivatives of θ are insignificant compared to the
remaining term. Thus,

θ � � aaxis
g

; ω ≪ ωo: (C1)

It is important to understand from equation (C1) that the pen-
dulum’s angular sensitivity to acceleration at frequencies
well below its natural frequency is independent of the posi-
tion of the axis. equation (C1) is a general result, no matter
the pendulum type. Typically, however, we do not employ a
sensor that measures θ directly but rather a detector is placed
at the bottom end of the pendulum where it measures the
transverse displacement relative to the instrument’s case.
The amount of motion at the bottom scales with length L,
which scales (for a simple pendulum) with the square of
the instrument’s natural period. Thus, we see that sensitiv-
ity to acceleration is proportional to the square of this natu-
ral period. To maximize the low-frequency sensitivity of an
open-loop (i.e., nonfeedback) system, one should operate
with as long a natural period as is conveniently possible, thus
the very long natural periods of modern broadband velocity
seismometers.

High-Frequency Sensitivity Limit

When the drive frequency is very high, the second de-
rivative term in equation (5) in the body of the article is sig-
nificantly greater than the other terms on the left-hand side
of the equation. Additionally (once transients have decayed
away) the pendulum is entrained with the drive and differs in
phase by 180°. Entrainment means that the only frequency of
pendulum motion is the frequency of the drive. Prior to en-
trainment, during the transient, both the natural frequency of
the pendulum and the frequency of the drive are simulta-
neously present. Thus, its steady-state frequency is the same
as that of a�t�, namely ω. Assuming monochromatic simple
harmonic motion, we obtain

θo � �ω2
o

g
Aground; (C2)

where Aground is the displacement amplitude (in meters) of
the axis and θ0 is the angular displacement amplitude (in ra-
dians) of the pendulum. To put equation (C2) into a more
useful form, note that the sensitivity of the instrument de-
pends on where we place the displacement detector. The out-
put of the detector is maximized when its sensing element is
placed as far as possible from the axis, that is, at L � d below
the axis, the bottom end of the pendulum. We designate the
amplitude of the motion there by Apendulum and obtain

Apendulum

Aground
� �L � d

Leff
: (C3)

Understanding can be improved by considering equa-
tion (C3) for the rod-only pendulum in the particular case
d � 0. With the axis therefore at one end of the rod and
the displacement sensor at its other end, equation (C3) be-
comes Apendulum � �3Aground=2. Compared to a simple pen-
dulum of the same length L as the rod, we find that with the
sensor at the bottom the compound rod-only pendulum is
50% more sensitive to high-frequency ground displacement.
This result follows from considering the center of percussion.
At high frequencies (ω > ω0), the center of percussion at
2L=3 is a stationary point in the inertial frame, around which
oscillation occurs. In other words, for high frequencies, the
center of percussion is also the inertial center of oscillation.
A simple drawing consistent with this arrangement reveals
the basis for the amplification factor of 3=2.

Frequency Dependence of the Center of Oscillation

We define the center of oscillation as follows: Consider
the line that rotates with the pendulum and that connects the
axis and the center of mass as extending to infinity. Further
consider the turning point pair of lines in inertial space that
are produced when this line is first at θ � θ0 and then half a
period later at θ � �θ0. At high-drive frequencies this pair of
lines intersects in inertial space at the center of percussion.
As the drive frequency is reduced to below the natural fre-
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quency of the pendulum, the intersection of this line-pair
moves downward.

The term percussion implies a short lived impulse; as the
driving period lengthens, the percussion point is no longer a
meaningful reference for the inertial center of rotational mo-
tion. The center of oscillation remains meaningful but is no
longer located at the center of percussion. As the drive fre-
quency goes toward zero, the center of oscillation moves to-
ward infinity. A (false) assumption that some part of the
inertial mass of a seismometer remains stationary in space
as the instrument case moves is acceptable when the instru-
ment is functioning as a vibrometer (i.e., drive frequencies
above the natural frequency), but it is not true for the low-
frequency extreme of the pendulum’s response.

Appendix D

Unconventional and Exotic Pendulums

Unconventional Pendulums

Rotation Sensor

Two very different, unconventional gravitational com-
pound pendulums are described in this appendix. Illustrated
in Figure D1 is a rotation sensor capable of operating over a
broad frequency range. Whereas the pendulum of Figure 1
in the body of this article is a rigid vertical-at-equilibrium
structure that oscillates about a horizontal axis, the rigid
beam of the pendulum illustrated in Figure D1 is horizontal-
at-equilibrium. I believe there are three advantages to this
system, although they have not all been experimentally veri-
fied. First, the influence of creep is expected to be less for the
horizontal configuration as compared to the vertical one.
Creep in the members of the long-period vertical pendulum
alters the equilibrium position, whereas creep of the boom in
the horizontal pendulum alters the period. Secular change in
the equilibrium position decreases the maximum possible
sensitivity of an instrument’s detector, unless force feedback
is employed. Period change is inconsequential except as it
increases responsiveness to translational acceleration. Be-
cause the instrument is designed to minimize this response,
the creep influence is of secondary rather than primary im-
portance as in the case of the vertical pendulum.

The second advantage involves air currents. A thermal
gradient within the container that holds the instrument can

cause convective flows, and the resulting circulation is ex-
pected to have greater influence on the vertical pendulum
than on the horizontal pendulum.

The final advantage results from the simple means by
which one mounts a pair of displacement detectors on oppo-
site ends of the beam. Operating differentially in phase op-
position, they yield a better signal-to-noise ratio (SNR) than
is possible from a single detector. The greater the length of
the beam, the greater will be the sensitivity of the instrument.

Some Other Inertial Rotation Sensors

Parts from a pair of STS-1 horizontal seismometers were
used to build a rotation sensor with mechanical properties
similar to the rotation pendulums I have described. The in-
strument tested by Hutt et al. (2004) differs, however, by
containing springs; the lower flexures are placed under ten-
sion by means of a large brass counterweight.

Morrissey (2000) also built a beam-balance broadband
tiltmeter with similar mechanical properties. His instrument
used a pair of lead masses mounted on opposite ends of a
horizontal aluminum bar suspended at the center with a
flexural axis. It used force-feedback balancing and he
claimed a sensitivity of 120 mV=μrad, with a resolution
of better than 0.1 nrad, using linear variable differential trans-
formers (LVDT). Wielandt (2002) notes that a capacitive sen-
sor is superior to an LVDT for the reason of the granular
nature of ferromagnetism of the latter. Compared to a capac-
itive sensor of (singly) differential type which is customary,
there is an SNR advantage to using a pair of (doubly � fully)
differential capacitive sensors with the pendulum of Fig-
ure D1, one such fully-differential detector for each end, with
the pair operating in phase opposition.

Microseism Detector

Although conventional seismographs always operate
with damping near 0.7 or 0.8, an undamped vertical pendu-
lum with merit is next described. Valuable information con-
cerning hurricanes (via microseisms) could be gleaned from
a large network of inexpensive pendulums operating with a
reasonably high Q. Lengthening the period by moving the
center of mass close to the axis has the following advantage.
The sensitivity of the pendulum to frequencies other than
resonance is significantly decreased as shown in Figure D2.
This is especially important for high-frequency noises that
derive from localized, cultural disturbances. This would al-
low the SNR of the electronics employed to be relaxed with-
out a significant loss of microseism detectability (Fig. D2).

The transient response of this high-Q pendulum would
disallow meaningful analysis of time domain data; however,
analyses in the frequency domain, using power spectral den-
sity (PSD) plots or cumulative spectral power (CSP) plots
would not be similarly limited (Peters, 2008a,b). Knowledge
of the Q, used to correct the spectra in generating the PSD,
allows for the generation of a wealth of useful information.

Figure D1. A horizontally oriented gravitational pendulum that
is sensitive to rotation but insensitive to translation. The axis of ro-
tation is perpendicular to the plane of the figure, and the arrows
show directions of the end-arm motion.
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Exotic Pendulums

Appreciation for the physics of pendulum dynamics
is improved by consideration of unconventional instru-
ments such as the Schuler pendulum and a gravity-gradient-
stabilized satellite that behaves like a pendulum

Schuler Pendulum

Tuned to a period of 84 min, the Schuler pendulum is
important to navigation. That period matches near-earth sat-
ellite periods and is described in detail elsewhere (Aki and
Richards, 2002).

Gravity-Gradient-Stabilized-Satellite Pendulum

Because of the inverse-square dependence of the Earth’s
field, a cigar-shaped satellite behaves as a very long-period
pendulum. The radial gradient of the field is responsible for a
separation of the center of mass and the center of gravity, so
that a torque exists when the long axis deviates from the ver-

tical. The method selected by De Moraes and Da Silva
(1990) to treat this problem is based on Hamiltonian dy-
namics. The following analysis uses Newton’s second law
and his expression for the gravitational field.

Assume a body in the shape of the rod-only pendulum
discussed in Appendix C, having mass m and length L. The
center of mass is located at the center of the rod, and the
center of gravity is calculated using

Z
L

0

GMedm

�R� y�2 �
mGMe

�R� yg�2
; dm � m

L
dy; (D1)

where G � 6:67 × 10�11 Nm2=kg2 is the Newtonian con-
stant, Me � 6 × 1024 kg is the mass of the Earth, R � 6:4 ×
106 m is the radius of the Earth, y is measured from the
bottom of the rod, and yg is the center of gravity. The integral
of equation (D1) yields to first order the expression

yg ≈ L

2
� L2

2R
: (D2)

Application of Newton’s second law yields

Ic �θ�mg
L2

2R
θ≈ 0; Ic �

mL2

12
; (D3)

from which it is seen that ω2
0 � 6g=R. With g≈ 9:2 m=sec2

at an altitude of 200 km, the pendulum’s effective length is
R=6, yielding a period of about 36 min. Oscillation in the
absence of imposed damping would prevent the satellite
from accomplishing mission objectives. A method that has
been used to attenuate oscillation employs hysteretic damp-
ing derived from electrical currents that are powered by
solar cells.

Physics Department
Mercer University
1400 Coleman Avenue
Macon, Georgia 31207

Manuscript received 1 July 2008

Figure D2. The displacement response of a compound pendu-
lum tuned to resonate with aQ of 40 at a period of 4 s. The response
of a near-critically damped simple pendulum of comparable physi-
cal length is shown for comparison (dashed curve).
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