XXX 487 Senior Design Phase I

Design & Analysis Applications in Industry & Senior Design

Some material adapted from a presentation by Dr. Jenkins Fall 2015

Product or Process Design in Industry

Project initiated by product or process goal

- Design process motivated by new product/process specification
 - Target new markets.
 - Reduce costs.

- Improve product specifications for customer or marketing demands.
- Generally, design is an enhancement to product or

process as opposed to a brand new design.

Design is a Process in Industry

- Feasibility Study
- Assemble Technical Team
- Develop Project Schedule
- Design & Implementation
 Brainstorming, Designs, Analysis,
 Selection, Approval,
 Prototype, Test
- Assessment of Results
- Repeat as necessary

Feasibility Study is Made 1st

- Determine impact of proposed new process/product/features.
 - New competitive edge, increase market share.
 - Open new markets.
- Estimate rough costs and potential schedule.
 - Is it physically possible? How long will it take?
 - What will it take (\$ and time)?
- Assess whether design is economically worthy?
 - Implement or discard the idea.
 - Return on Investments (ROI), Timing, (>30% ROI is often required)
 - (Limited engineering, accounting, manufacturing resources.)

SUCCI

Assemble Technical Team

- Assign members from different appropriate disciplines:
 - Engineering
 - ME, EE, EVE, IE, etc.
 - IT professionals, designers, etc.
 - Technology specific vendors
 - Construction, manufacturing
 - Accounting, marketing, etc.
 - Project Manager

Develop Project Schedule

- Design and Analysis : (Typical projects)
 - Product
 - Manufacturing process
 - Product data flow
- Prototyping/testing
- Facility construction/equipment installation/tooling
- Testing and Analysis of Results
- Refinement of Design and Process
- Production Trials
- Product Launch

Design and Analysis Requirements in Industry

- Quantity matters
 - How many are we going to make?
 - Is the design for a consumer product?
 - How big is the market?
 - Is the design for an internal use or a production machine?

Qne, ten, er ... millions?

Design and Analysis Requirements (How much analysis to do?)

- Safety, Cost, and Quality matter
 - How costly is a mistake?
 - Is personal safety affected by this design?
 (aircraft part, high speed equipment).
 - Is the cost of repair large? (Space shuttle, Hubbel telescope, production down-time)
 - Is the item a critical component of an expensive system (manufacturing line, luxury vehicle)?

Why Simulate & Analyze?

- Determine what is the problem to be solved.
 - Obvious symptom or solution may not be right one.
- Cannot test everything (e.g., earthquakes, wind, etc).
- Analysis takes less time than build & test
- Virtual prototyping <u>costs less</u> than building
- Evaluate *more* potential solutions.
- See what *new problems* the solutions cause.
- Explore multiple solutions: *Determine best design*
 - Merit Analysis (Decision Matrix)
 - Controlled Convergence of a workable solution

Types of Analysis

- Product/process function & performance
 - Does it work like it should? New features?
 - Is it faster or "better" than other solutions?
- Product/process integrity
 - Will it fail under some potential conditions?
 - Will it last long enough?
- Product/process human impact
 - Ergonomics
 - Safety
 - Usability
 - Environmental effect (production & disposal)
 - Societal problems created

Types of Design Analysis

- Single-answer analysis:
 - Hand calcs: A 600 lb. container is supported by the 3/8" rope. Determine if rope fails.
 - Do I have a large enough power supply? (V*A)
- Performance analysis:
 - Strength & Mechanical Analysis: FEA (Pro/E, Ansys)
 - P-Spice, MATLAB: Will new CPU work, be fast enough? Is robot stable?
 - Arena, Excel: Can the plant produce more?
- Ergonomics (Human Data):
 - Size, force requirements, heights, font size, etc.

Design and Analysis Efforts

- High Design and Analysis Efforts:
 - Inexpensive, high volume products (Telephones, razors)
 - Low volume, critical products (NASA rocket, nuclear power plant)
 - Safety related products (elevators, eye lasers, hard hats, ladders)
 - Unable to test adequately (deep sea, costly production, etc.).
 - Senior design projects

Industry Design Example: Safety Related Components

- Nuclear Power Plant Components
 - Required by US Code of Federal Regulations
 - (e.g., 10CFR50)
 - Potential (hypothetical) failures are analyzed.
 - Loss of coolant accidents (LOCA)
 - Earthquakes
 - Operational transients
 - Extensive modeling and simulation. (FEA, CFD, FMEA, PLC simulations)

Industry Design Example: Large Volume Product

- Every year the USA produces:
 - 1 billion foil-lined fruit juice boxes
 - 25 billion styrofoam cups
 - 1.6 billion disposable pens
 - 2 billion disposable razors
 - 16 billion disposable diapers

- High volume allows the cost of design and analysis to be spread over a large number of pieces.
- A mistake would be repeated millions or billions of times.
- Manufacturing tooling is expensive.

Questions?

- Thanks for your attention.
- Reminders:
 - Meeting with me on Thursday
 - See the published schedule for your meeting time.
 - Unless previously approved, ALL group members should be present.
- Next class meeting: Tuesday, February 9.