Design of Information Displays

- **Display**: a human-made artifact “designed to support the perception of relevant system variables and facilitate the further processing of that information.” (Wickens et al., pg. 185)

- Classified by:
 - physical properties of the display
 - tasks they support
 - characteristics of the user
 - for example,

<table>
<thead>
<tr>
<th>Coded</th>
<th>Reproduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>chart, stop sign</td>
</tr>
<tr>
<td>Dynamic</td>
<td>speedometer, light path displays</td>
</tr>
</tbody>
</table>

Display Design Principles

- **Perceptual Principles**
 - The perceptual principles deal with the way a user initially perceives the material presented. The information needs to be presented in a clear and unambiguous manner so as to avoid confusion by the user.
 1. Make the display legible
 - The most important principle of display design. Every display must be legible to allow the user to interact with it successfully.
 - The correct combination of colors, contrasts, and sounds should be used to ensure that the user gets the necessary information from the display.

Visibility

- **Image clarity (previously)**
- **Location in field of vision**
 - See pp. 66-67 of your textbook

- **Proximity** (how close) to the operator will affect the desired size of the display. Viewing distance also affects distinguishability.
What’s wrong with these pictures?

Distinguishability

2. Avoid absolute judgment limits.
 - Coding based on a single sensory variable
 - 5-7 levels max
 - Research examples from the literature

 - Consider relative judgements (where appropriate) instead
 - (e.g., darker hues of the same color indicate “more”)
3. Top-down processing.
 - Will cause people to interpret cues based on expectations
 - Design displays and controls that meet expectations to maximize performance
 - More physical evidence will be required for signals that are contrary to people’s expectations

4. Redundancy gain.
 - Example: traffic lights

5. Discriminability:
 - Similarity causes confusion.
 - The degree of similarity depends on the ratio of similar features to dissimilar ones

Panel Organization
- Group displays by
 - FUNCTION
 - FREQUENCY
 - ORDER OF USE
 - Things that are used together
- Determine sequence and frequency of use through link analysis
- In general,
 - Most frequently used displays should be in the center of the field of vision
 - Scanning is
 - Top to bottom (always)
 - Left to right (mostly)
 - Other common patterns
 - “F”
 - “Z”
 - Larger and more attention-grabbing displays will compel the operator’s attention.
Monitor saccadic eye movement across a display panel.

Mental Model Principles

- When a user sees a display, they usually interpret the display based on their expectations of the system being displayed. These expectations come from past experiences which have formed a mental model of the system and how it works. It is important to design displays that are consistent with the mental models of the user.

Displayed quantities should correspond to the human's internal model of these quantities.

- Continuous variables should have analog displays; discrete variables should have digital displays.
- Also, high values of the variables should be on the top of the display (or right); low values on the bottom (or left).
- Other factors to consider: required precision, rate of change information.
- Examples to discuss: altimeter, thermometer, scale, watch, speedometer.
 The direction of movement of an indicator on a display should be compatible with the direction of movement of an operator's internal representation of the variable whose change is indicated.
 - Example: Thermometer's mercury rises as temperature rises.
 - Violation: Fixed pointer-moving scale display.

 ![Temperature Scale Example](image)

<table>
<thead>
<tr>
<th>112</th>
<th>114</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>118</td>
</tr>
<tr>
<td>118</td>
<td>120</td>
</tr>
</tbody>
</table>
 VS.
 | 116 |
 | 114 |
 | 112 |

 - "Sticky" example from aviation: the display of the aircraft's bank angle to pilots.
 - "Outside-in" "ground referenced" "bird's eye" display (moving plane, fixed ground) conforms to the principle of the moving part, but violates the pilot's frame of reference.
 - "Inside-out" "pilot's eye" "moving horizon" display - violates the principle of the moving part but congruent with the pilot's frame of reference.
 - A compromise: The Frequency-Separated Display
 - Rapid control movement induces "outside-in" display change.
 - When the pilot enters into a gradual turn, the horizon and plane slowly rotate to an "inside-out" format.
 - Thus, at high frequencies, when motion perception is dominant, the principle of the moving part is followed. At low frequencies, the static principle of compatibility of frames of reference is followed.

Other examples to discuss

![Other Examples](image)
8. Minimizing information access cost.
 - Example:

 - Promote integration of information (where appropriate.)
 - Recall gestalt - human tendency to perceive complex configurations as complete entities

 ![Image](image_url)

 - Note: This carries over into design of controls, in that the spatial arrangement of displays should be preserved in the controls. (Example: stove controls.)

 - We'll discuss this when we discuss multiple resource theory.

11. Principle of knowledge in the world.
 - Knowledge “in the world” is more reliable than knowledge “in the head”.
 - Tradeoff: space constraints, information overload (requires careful design.)

12. Principle of predictive aiding
 - Example: predictive display for aircraft

 ![Image](image_url)
Principle of consistency:
- Consistent with other systems as well as other displays for "this" system.
- Consistent with user's mental model of how things work.

Others?

Displays for Specific Purposes

- Types of Information Display:
 - Direct
 - Indirect

<table>
<thead>
<tr>
<th></th>
<th>Coded</th>
<th>Reproduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>chart, stop sign</td>
<td>photograph</td>
</tr>
<tr>
<td>Dynamic</td>
<td>speedometer, flight path</td>
<td>video image, film</td>
</tr>
</tbody>
</table>

Your turn
- Alerting displays
- Labels
- Monitoring
- Multiple displays
 - Layout issues
 - Head-up displays
 - Head-mounted displays
 - Configural displays
- Maps
- Quantitative information