Design and Analysis Applications in Industry and Senior Design

Hodge Jenkins, Ph.D., P.E.
Associate Professor of Mechanical Engineering
Richard O. Mines, Jr., Ph.D., P.E.,
F. ASCE, F. EWRI, F. ASEE
Professor of Environmental Engineering and
Director of MSE & MS Programs
Mercer University

My Experience

• Worked for two internationally known environmental consulting firms: CH2M Hill and Black & Veatch.
• I most often worked with a team of other engineers: Structural, geotechnical, electricals, mechanicals, instrumentation and process control engineers, and technicians.
Design Process I

- Our firms responded to Statement of Qualifications (SOQs) and Request for Proposals (RFPs).
- I wrote portions of proposals and made presentations to prospective clients if we were short-listed.
- If selected, we developed a Preliminary Design and presented it to client. Made revisions and held in-house reviews prior to preparing Final Design.

Design Process II

- Developed detailed *specifications* for all process equipment: pumps, blowers, clarifiers, aerators, mixers, etc. along with *detailed drawings* showing the layout of the facilities, plan and profile views of major processes.
- Developed *Operational Manuals* for major pieces of equipment.
- Once project was bid and construction began, reviewed shop drawings to see if met the design.
Product or Process Design

• Projects are initiated for new products, or new process goal.
• Design process motivated by new product/process specification
 • Target new markets.
 • Reduce costs.
 • Improve product specifications for customer or marketing demands.

• Generally, design is an enhancement to an existing product or process, as opposed to a brand new design.

Design and Innovation is a Continuous Process in Industry

• Feasibility Study Conducted First
• Assemble Technical Team
• Develop Project Schedule
• Design & Implementation
 – Brainstorming, Designs, Analysis,
 – Selection, Approval,
 – Prototype, Test
• Assessment of Results
• Repeat as necessary
Feasibility Study is Made First

• Determine impact of proposed new process/product/features.
 ▪ New competitive edge, increase market share.
 ▪ Open new markets.

 ▪ Develop rough cost estimate and potential schedule.
 ▪ Is it physically possible? How long will it take?
 ▪ What will it take in terms of money and time?

 ▪ Assess whether design is economically worthy?
 ▪ Implement or discard the idea.
 ▪ Return on Investments (ROI) $$, (usually >30% is often required)
 ▪ Timing of implementation

Technical Team

• Assign members from appropriate disciplines:
 – Engineering
 • ME, CE, EE, IE, I & C, etc.
 – IT professionals (PC, networks)
 – Technology specific vendors
 – Construction
 – Accounting, Marketing, etc.
 – Project Manager
Develop Project Schedule

– **Design and Analysis**: (Typical projects)
 - Product design
 - Manufacturing process
 - Product data flow

– **Build Prototype and Prove Results**
– Refinement of Design and Process
– Testing and Analysis of Results
– Facility construction/equipment installation
– Production Trials
– Ready to Manufacture (RTM)

Feasibility & Specification

• **Feasibility Criteria**: Go versus No-Go features
 – **A MUST HAVE ATTRIBUTE**
 • Example: Must be electric power; must be less than 1 ton.

• **Specification**: Value target on performance measure
 – May need to translate **qualitative performance** to a specific value
 • Speed, Power, Current, Life
Brain Storm, Design Concepts, Analysis

- Brainstorm for creative ideas
- Come up with conceptual designs
 - Select 2 “best” design concepts to pursue
 - You will need to have a minimum of two designs for Sr Design; preferably three
- Use analysis performance of design to help you decide on what design to select.
- Continue more detailed analysis to show your design meets all feasibility and specifications.

Design and Analysis Requirements in Industry

- **Quantity matters**
 - How many are we going to make?

 - Is the design for a consumer product?
 - How big is the market?
 - Is the design for an internal use or a production machine?
Design and Analysis Requirements
(How much analysis to do?)

• Safety, Cost, and Quality Matter
 – How costly is a mistake?
 • Is personal safety affected by the design? (aircraft part, high speed equipment).
 • Is the cost of repair large? (Space shuttle, Hubbel telescope, production down-time)
 • Is the item a critical component of an expensive system (manufacturing line, luxury vehicle)?

Why Simulate and Analyze?

• Determine what is root of the problem to be solved.
 Obvious symptom or solution may not be right one.
• Cannot test everything (e.g., earthquakes, wind, etc).
• Analysis takes less time than build & test
• Virtual prototyping costs less than building
• Evaluate more potential solutions.
• See what new problems the solutions cause.
• Explore multiple solutions: Determine best design
 – Merit Analysis (Decision Matrix)
 – Controlled Convergence of a workable solution
Types of Analysis

- **Product/process: function & performance?**
 - Does it work like it should? New features?
 - Is it faster or ‘better’ than other solutions?

- **Product/process: integrity?**
 - Will it fail under some potential conditions?
 - Will it last long enough?

- **Product/process: human impact?**
 - Ergonomics
 - Safety
 - Environmental effects (production & disposal of pollutants, waste streams)
 - Societal problems created (loss of jobs, relocation)

Types of Design Analysis

Single-answer analysis:
- **Hand calculations:** A 600 lb. container is supported by the 3/8” rope. Determine if rope fails.
- Do I have a large enough power supply? (Power=Voltage*Amperes)

Performance analysis:
- Strength & Mechanical Analysis: Finite elements analysis (FEA) (**CREO**: 3-D CAD Software, **ANSYS**: simulation software)
- **P-**Spice (circuit simulator), **MATLAB**: Will new central processing unit work, be fast enough? Is robot stable?
- **Arena**: simulation software, **Excel**: Can the plant produce more?

Ergonomics (Human Data):
- Get the right: Size, force requirements, heights, etc.
Design and Analysis Efforts

• High Design and Analysis Efforts:
 – Inexpensive, high volume products (Telephones, razors)
 – Low volume, critical products (NASA rocket, nuclear power plant)
 – Safety related products (elevators, eye lasers, hard hats, ladders)
 – Unable to test adequately (deep sea, costly production, etc.).
 – Senior design projects

Industry Analysis Example:
Safety Related Components

• Nuclear Power Plant Components
 – Required by U.S. Code of Federal Regulations
 • (e.g., 10CFR50)
 – Potential (hypothetical) failures are analyzed.
 – Loss of coolant accidents (LOCA)
 – Earthquakes
 – Operational transients (transitioning from 50 to 100% capacity).
 – Extensive modeling and simulation.
 (FEA, Computational Fluid Dynamics
 – Failure Mode Analysis,
 PLC simulations)
Industry Design Examples: Large Volume Product

- **Every year the USA produces:**
 - 1 billion foil-lined fruit juice boxes
 - 25 billion styrofoam cups
 - 1.6 billion disposable pens
 - 2 billion disposable razors
 - 16 billion disposable diapers

- High volume allows the cost of design and analysis to be spread over a large number of pieces.
- A mistake would be repeated millions or billions of times.
- Manufacturing tooling is expensive.

The Gillette Mach3Turbo

- Gillette's triple-blade shaving system is “the most technologically advanced shaving system in the world provides a number of important design features.”
 - Protected by **45 patents:** "innovations, including new Anti-Friction™ blades, an ultra-soft protective skin guard, a patented Indicator® lubrication system and an improved razor handle."
 - $300 Million Development Cost
 - Generated $300 million in sales the first year
Gillette Fusion

• 5 Blade Shaving Surface™ Technology
• Protected by more than 70 patents, granted or pending
• P&G has about 27,000 patented technologies.
• 550 new patents in 2010 for P&G.

The Design and Analysis Approach
Changes with Technology

• New design software tools.
• New easy integrated analysis software
 – (e.g., P-spice, Creo, SolidWorks, Ansys, CFX, Simulink…..)
• Skill level requirements are lessening.
• Smaller cost to analyze.
• More cost to create and test than to virtual prototype.
• Direct Digital Manufacturing: 3-D printing.
Modeling and Analysis Time Decreasing with Technology!

Simulate Design Before Building

Fix errors
Optimize Parameters
DANGER!

• Inaccurate and over simplified models
 – Results may have convergence error
 – Model input may not be correct, or correctly applied
 – Boundary conditions, assumptions, etc. may be incorrect
 – Physical world differences from model

• Misapplied analysis and assumptions
 – Analysis limitations (linear, non-linear)
 – FEA makes a good engineer better…
 ….but makes a bad engineer dangerous

• Testing still required!

Design is often Iterative
(many approaches)
Case Study in Design for Optical Fiber Production

- Optical fiber produced in 2004 was over 55,000,000,000 meters.
 - (Enough to go around the world over 1300 times!)
 - Production machines generally produce on the order of 1 million meters of optical fiber per day.
 - Cost improvements on the order of 0.1% are significant in terms of dollars (millions of dollars per year).
 - Designs changes for tightening specifications, yield and productivity are done continuously.

Fiber Manufacturing Schematic

http://www.fiberinstrumentsales.com/blog/how-fiber-optics-are-made
Problem: Customers Require More Uniform Lengths of Fiber on Spools, so short length sell for less.

- Customers purchase specific lengths of fiber (12.5km, 25km, 37.5km, 50km)
- The probability of breaks in the fiber during fabrication is somewhat random (lengths vary).
- Longer in-process lengths will reduce the manufactured breaks in the fiber.
- Action from feasibility study: Design and deploy machines and process with greater spooling capacity greater than 500 km per spool instead of 100 km.

Longer Lengths of Fiber on a Spool?

- Solution Seems Simple: Get Larger Spools!.....but
 - New machinery required for processing larger spools
 - New materials handling equipment required
 - New process procedures required
 - New test equipment required
 - In-process lag on quality feedback

Design and Manufacturing are a System. Change in one area effects the others. Planning and Project Management is required
Large Spool Project

- Feasibility Study
- Project schedule initially formed
- Design and Analyses performed
- Design selected and fully documented
- Prototypes constructed, evaluated, improved
- Prototypes installed for production line testing
- Data gathered and evaluated
- On-line design modifications while continue testing
- Tests Complete (data),
- Recommendations made
- Revise Design for production
- Implemented design in facility and retrofits

Testing and Analyses Performed and Repeated

- Feasibility of Process Change
- Process Design & Analyses
- Machine Design & Analyses
 - Mechanisms, structures
 - Control, electrical power
- Manufacturing/ Test Data:
 Did it do what we set out to accomplish. (machine & process)?
- REPEAT if needed
Generations of Development

First Prototype

Take up machine for optical fiber.

Latest Design

Summary:
Obtain Successful New Designs through Planned Design, Analysis & Testing:

- **Understand current situation:** systems and opportunities
- **Thorough design and analysis**
- **Changing/Designing as a system.**
 - Not just a collection of well-designed parts
- **Effective exchange of information to all groups affected by a proposed change**
- **Extensive testing and evaluation still needed**