Misconceptions About Stirred SVI

Richard O. Mines Jr. Environmental Engineering Mercer University Macon, GA 31207

Cheryl R. Horn Civil and Environmental Engineering Virginia Tech Blacksburg, VA 24601

Abstract

•Settling characteristics of mixed liquor were evaluated in 1-L and 5-L, stirred and unstirred, plastic settling columns.

•MLSS concentrations ranged from approximately 1,200 to 9,400 mg/L.

•Two-tailed, paired comparison, statistical analyses at the 5% level of significance indicated there was a significant difference between the SVIs obtained from the stirred and unstirred 1-L and 5-L settling columns.

•Two-tailed, paired comparison, statistical analyses performed at the 5% level of significance indicated there was a significant difference between the zone settling velocities observed in the stirred and unstirred 1-L and 5-L settling columns.

• Surface areas based on stirred settling column analyses may result in areas that are 33% to 238% smaller then those predicted from unstirred settling column analyses.

•In the design of full-scale, secondary clarifiers, a scaling factor of 1.5 - 2.0 should be applied to the limiting solids flux values obtained from stirred settling column analyses.

Introduction

- The literature has promoted stirred sludge volume index (sSVI) over the traditional unstirred SVI (uSVI) as a design parameter for enhancing the design and operation of secondary clarifiers.
- Performed this study to corroborate previous work published on SVI.
- And point out misconceptions about using uSVIs versus stirred SVIs.

Settling Velocity Equations

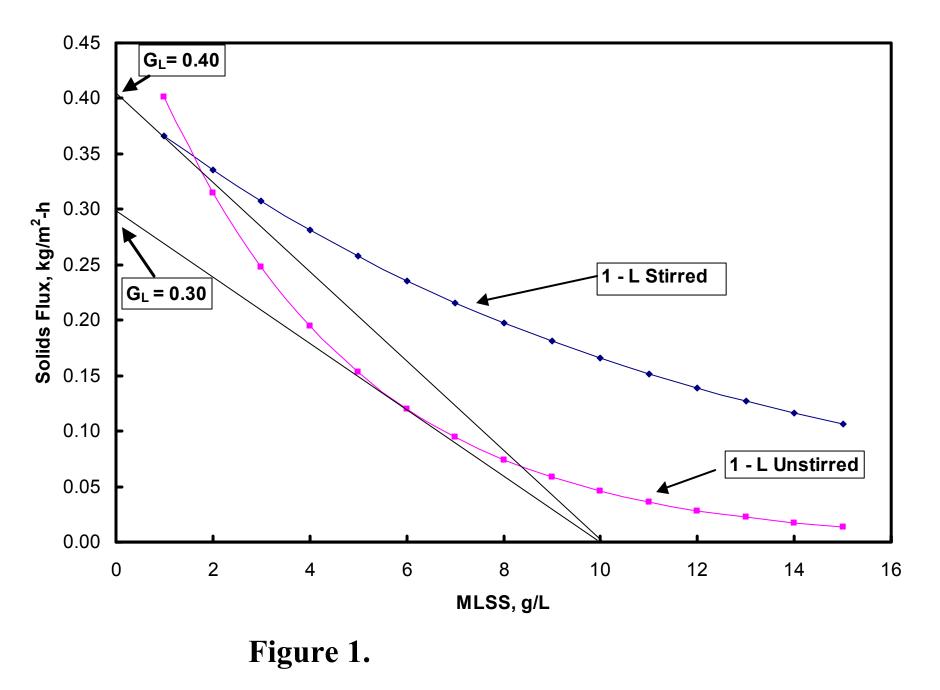
$$V_i = 7.80 e^{-[0.148 + 0.00210 (uSVI)]MLSS}$$
Daigger and Roper
(1985) $V_i = (15.3 - 0.0615 (sSVI)) e^{-[0.426 + 0.00384 (sSVI) - 0.0000543 (sSVI)^2]MLSS}$ Wahlberg and Keinath
(1988) $V_i = 1.871 e^{-[0.1646 + 0.001586 (uSVI)]MLSS}$ Daigger (1995) $V_i = 7.27 e^{-[0.0281 + 0.00229 (uSVI)]MLSS}$ Mines et. al. (2001)

Results

Date	MLSS (g/L)	1-L sSVI (ml/g)	1-L uSVI (ml/g)	5-L sSVI (ml/g)	5-L uSVI (ml/g)	1-L sZSV (m/h)	1-L uZSV (m/h)	5-L sZSV (m/h)	5-L uZSV (m/h)
10/22/02	1.220	61	90	86	102	0.290	0.297	0.827	0.809
10/22/02	2.595	77	96	95	104	0.280	0.257	0.787	0765
10/17/02	4.820	79	114	106	131	0.271	0.230	0.653	0500
10/14/02	5.710	65	96	100	122	0.266	0.215	0.533	0.388
10/14/02	6.630	72	129	104	142	0.240	0.084	0.387	0.076
10/14/02	7.410	75	119	106	128	0.206	0.074	0.252	0.057
10/17/02	9.360	71	98	94	101	0.156	0.046	0.142	0.061

Paired Comparisons

	1-L Columns	5-L Columns
α	0.05	0.05
df	6	6
t	3.17	3.37
$t_{(0.025)}$	2.45	2.45


Paired Comparison of Stirred and Unstirred Zone Settling Velocities.

Paired Comparison of Stirred and Unstirred SVIs.

	1-L Columns	5-L Columns
α	0.05	0.05
df	6	6
t	-7.32	-4.99
$t_{(0.025)}$	2.45	2.45

Example Problem #1

As an example, design a secondary clarifier to handle a flow of 7,570 m^3/day (2 MGD) at a MLSS concentration of 3,000 mg/L. A recycle ratio of 0.43 will be used and the underflow suspended solids concentration is 10,000 mg/L. An surface overflow rate of 27 $m^3/d-m^2$ will be used. From Figure 1, the limiting solids flux was 0.30 kg/m²-h based on the 1-L unstirred settling column analysis and 0.40 kg/m²-h based on the 1-L stirred settling column analysis. Clarifier surface areas based on clarification, Equation (2) and thickening, Equations (3) and (4) are presented below:

Solution to Problem #1

(2)

$$A_{clarification} = \frac{7570 \ m^3 \ / \ d}{27 \ m^3 \ / \ d - m^2} = 280 \ m^2$$

$$A_{thickening(1-Lunstirred)} = \frac{(7570 + 3255)(3000)(1000)(1/10^6)}{0.30(24)} = 4510 m^2$$
(3)
$$A_{thickening(1-Lstirred)} = \frac{(7570 + 3255)(3000)(1000)(1/10^6)}{0.40(24)} = 3383 m^2$$

Solution to Problem #1 Continued

The area based on thickening will control the design of the clarifier however, a 33% larger clarifier will have to be constructed if the limiting solids flux based on the unstirred settling column analysis is used in the design, Equation (4). Applying a scaling factor of 1.5 to the limiting solids loading rate of 0.40 kg/m²-h results in a surface area of 5,074 m² that is closer to the surface area predicted by using the unstirred 1-L settling column data, Equation (3).

Example Problem #2

This example is the same as example 1. The only difference is that the limiting solids flux data from Figure 2 is used. These figures are based on the stirred and unstirred 5-L settling column analyses. The limiting solids flux values are 0.40 kg/m²-h for the 5-L unstirred settling column analysis and 0.95 kg/m²-h for the 5-L stirred settling column analysis. Areas based on clarification, Equation (6) and thickening, Equations (7) and (8) are presented below:

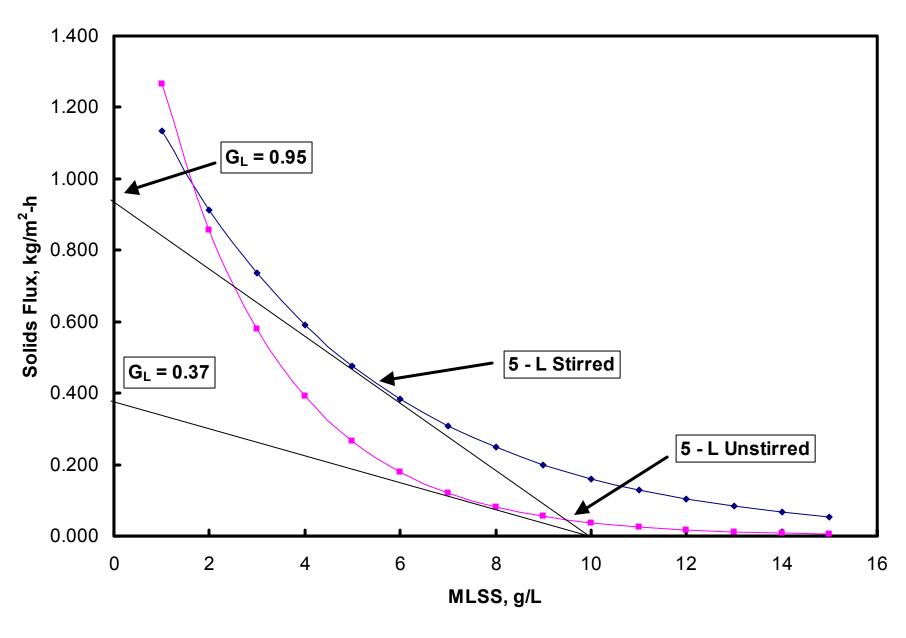


Figure 2.

Solution to Problem #2

(6)

(7)

$$A_{clarification} = \frac{7570 \ m^3 \ / \ d}{27 \ m^3 \ / \ d - m^2} = 280 \ m^2$$

$$A_{thickening(5-L\ unstirred)} = \frac{(7570 + 3255)(3000)(1000)(1/10^6)}{0.40(24)} = 3383\ m^2$$

$$A_{thickening(5-L \ stirred)} = \frac{(7570 + 3255)(3000)(1000)(1/10^6)}{0.95(24)} = 1424 \ m^2$$

Solution to Problem #2 Continued

Using the limiting solids flux data based on the unstirred, 5-L settling column data results in a clarifier surface area that is 238% larger than the area predicted using the stirred limiting solids flux from the 5-L column. Applying a scaling factor of 2.0 to the limiting solids loading rate of 0.95 kg/m²-h (Equation 9) results in a surface area of 2,849 m², which is closer to the surface area predicted by using the unstirred 5-L settling column data (Equation 7).

$$A_{thickening(5-L\ stirred)} = \frac{(7570 + 3255)(3000)(1000)(1/10^6)}{(0.95/2)(24)} = 2849\ m^2$$

Conclusions

- Our work corroborate Wahlberg and Keinath ^[3] results showing that stirring has a significant impact on both the zone settling velocity and sludge volume index.
- Two-tailed, paired comparison analyses at the 5% level of significance indicated there is a significant difference between SVIs obtained from stirred and unstirred 1-L settling columns.

Conclusions continued

- Two-tailed, paired comparison analyses at the 5% level of significance indicated there is a significant difference between zone settling velocities obtained from stirred and unstirred 1-L settling columns.
- Two-tailed, paired comparison analyses at the 5% level of significance indicated there is a significant difference between SVIs obtained from stirred and unstirred 5-L settling columns.

Conclusions continued

- Two-tailed, paired comparison analyses at the 5% level of significance indicated there is a significant difference between zone settling velocities obtained from stirred and unstirred 5-L settling columns.
- A scaling factor (1.5 2.0) should be applied to the limiting solid flux values developed from stirred settling column analyses to enable clarifiers to handle peak solids loadings.

References

- 1. Standard Methods for the Examination of Water and Wastewater, 18th Edition. American Public Health Association, Washington, DC, 1992.
- 2. Daigger, G. T.;Roper, Jr., R. E., The relationship between SVI and activated sludge settling characteristics, JWPCF, **1985**, 57, 859-866.
- 3. Wahlberg, E. J.; Keinath, T. M. Development of settling flux curves using SVI, JWPCF, 1988, 60, 2095-2100.
- 4. Keinath, T. M. Diagram for designing and operating secondary clarifiers according to the thickening criterion, RJWPCF, **1990**, 62, 254-258.
- 5. Daigger, G. T. Development of refined clarifier operating diagrams using an update settling characteristics database, Wat. Env. Res., **1995**, 67, 95-100.
- 6. Mines, Jr., R. O.; Vilagos, J.L.; Echelberger, Jr., W. F.; Murphy, R. J. Conventional and AWT mixed liquor settling characteristics, ASCE, JEED, 2001, 127, 249-258.
- 7. Hermanowiz, S. W. Secondary clarification of activated sludge development of operating diagrams, Wat. Environ. Res., **1998**, 70, 10-13.
- 8. Childers, R.; Horn, C; Strong, S.CSC Design Wastewater Settling Column Analysis Critical Design Review, unpublished undergraduate research design project, Mercer University, School of Engineering, December, 2002.
- 9. Reynolds, T.D.; Richards, P.A., *Unit Operations and Unit Processes in Environmental Engineering*, , PWS Publishing Company, Boston, MA, 1996,261.