BOD Performance Correlation at Georgia's WWTPs

Richard O. Mines, Jr., Laura W. Lackey Jennifer C. Sheppard *Mercer University* Glen Behrend *Georgia EPD*

Acknowledgement

 This project was primarily performed by Ms. Jennie Sheppard, an undergraduate Environmental Engineering student at Mercer University.

Outline

- Objectives
 Importance
 Background & Literature Review
 - Methods and Materials
 - Results and Discussion
 - Summary and Conclusions

Objectives

- 1. Determine the effect of influent flowrate on influent BOD concentration.
- 2. Determine the effect of influent BOD loading on effluent BOD concentration.
- 3. Determine the effect of rainfall on the influent BOD concentration.
- 4. Determine peaking factors for flows and mass loadings for Georgia's WWTPs.

Importance

- WWTP design should be based on mass influent loadings rather then concentration
- Influent flows and loadings impact the operation and performance of WWTPs
 Impact of rainfall on flows and loadings affects operation and performance of WWTPs

Hydraulic Design Flows

- Maximum monthly ADF is normally established as the design capacity of a WWTP. MMADF ≅ (1.2 - 1.3) ADF
- MMADF is used for sizing primary clarification, biological treatment, secondary clarification and solids handling processes.
- Peak daily flow or peak hourly flow is used for sizing pumping stations, pumps, pipelines, channel, bar screens, and grit removal systems.
- PHF \simeq (2 3) ADF

Design Mass Loadings

- Annual average daily load (AADL) is used for estimating solids production and turndown for aeration blowers and RAS pumps.
- Maximum monthly average daily load (MMADL) is used for sizing primaries, biological treatment units, and secondary clarifiers.
- MMADL \simeq (1.2 1.3) AADL
- Peak week average daily load (PWADL) is the controlling factor in sizing solids handling facilities.

Design Considerations

- Loading variations should not be estimated by multiplying a single concentration by various calculated flows.
- Should forecast wastewater flows and mass loadings separately.
- Peak flows and constituent loadings usually do not occur concurrently.
- Loading rather than concentration is the fundamental design parameter.

Combined Sewer System Bertrand-Krajewski et al.

- 1. WWF \approx 3.08 times DWF
- **2.** Influent TSS loadings \approx 10 times DWL
- **3.** Influent BOD loadings \approx 7 times DWL
- **4.** Influent NH₃ loadings \approx 1.2 times DWL
- **5**. Effluent TSS loadings \approx 7 times DWL
- Active biomass fraction in AB reduced, affects performance for several days after storm events.

Modeling AS Plant with Storm Tanks

- 1. Total volume of runoff was similar for two storm events (SDHI, LDLI).
- 2. Mass of COD and SS in influent greater for SDHI storm event.
- Mass of ammonia in the influent was same for both storm events.
- For SDHI, locate tank at plant influent or after primaries, operate in fill & bypass mode.
- For LDLI, locate tank at plant influent, fill to capacity or locate after primary filling to capacity and allowing minor overflows.

High Flows & Plant Performance Berthouex and Fan

- 15 WWTPs evaluated; 24,554 days of data.
- High flow caused 298 SS upsets or 19% of the solids upsets.
- High flow caused 174 BOD upsets or 11% of the BOD upsets.
- Average upset length: 3.5 days for TSS & 3.75 days for BOD.

Materials & Methods

- Obtained plant operating data from the Georgia Environmental Protection Division
- Rainfall data were obtained from NOAA
 Plant operating data consisted of monthly averages of *influent* & *effluent* BOD and TSS; primarily effluent nitrogen, and phosphorus concentrations, and *flowrates*
- Data from the 2003 calendar year were evaluated

Facilities Evaluated

- 24 domestic wastewater treatment facilities located throughout the state of Georgia
- Capacity of the facilities were 37,850 m³/day (10 mgd) up to 454,000 m³/day (120 mgd)
- All the facilities used biological treatment in the form of activated sludge or some modification
- One facility used wetlands for effluent disposal

Data Reduction

- Influent flowrate versus influent BOD concentration
- Influent BOD loading versus effluent BOD concentration
- Monthly average rainfall versus influent BOD concentration
- A correlation coefficient (R) value of 0.4 was considered significant.

Influent Q vs. Influent BOD

Influent Q vs. Influent BOD

(11 facilities)

Influent Flow, m³/day

Influent Q vs. Influent BOD

- 22 out of 24 facilities had negative slope indicating that influent BOD concentration (mg/L) decreases with increase in influent flow (m³/day).
- **2. 16** out of **22** facilities had a correlation coefficient of $R \ge 0.4$.
- **3.** *R* ranged from 0.47 to 0.95, averaging 0.47.
- 4. Influent BOD = -0.0004 (Q) + 210.3

Influent BOD Loading vs. Effluent BOD

Influent BOD Loading vs. Effluent BOD

(9 facilities)

Influent BOD Loading vs Effluent BOD Concentration

- 15 out of 24 facilities had positive slope indicating influent BOD loading (kg/day) correlates to the effluent BOD concentration (mg/L).
- **2. 9** out of **15** facilities had a correlation coefficient of $R \ge 0.4$.
- **3.** Correlation coefficients ranged from 0.44 to 0.92, averaging 0.68.

Monthly Rainfall vs. Influent BOD

Monthly Rainfall vs. Influent BOD

Monthly Rainfall Average, mm

Monthly Rainfall vs. Influent BOD

- 1. 22 out of 24 facilities had a negative slope indicating a correlation between monthly rainfall intensity (mm) and influent BOD concentration (mg/L).
- 2. 15 out of 22 facilities had an correlation coefficient of $R \ge 0.4$.
- **3.** Correlation coefficient ranged from 0.47 to 0.96; averaging 0.47.
- 4. Influent BOD = -0.3987 (I) + 215.83

Flow Peaking Factors

Parameter	Average	Range
Maximum Monthly: Average Daily Flow	1.29	1.11-1.78
Peak Daily:	1.56	1.28-2.44
Average Daily Flow		

Concentration Peaking Factors

Parameter	Average	Range
Maximum Monthly BOD:	1.34	1.07
Average Daily BOD Conc.		2.04
Peak Daily BOD: Average	1.68	1.19 –
Daily BOD Concentration		2.49
Maximum Monthly TSS:	1.36	1.12 –
Average Daily TSS Conc.		1.79
Peak Daily TSS: Average	2.10	1.10
Daily TSS Concentration		2.69

Loading Peaking Factors			
Parameter	Average	Range	
Maximum Monthly BOD: Average Daily BOD Loading	1.58	1.10 4.64	
Peak Daily BOD: Average Daily BOD Loading	1.83	0.97 – 5.38	
Maximum Monthly TSS: Average Daily TSS Loading	1.64	1.13 – 4.49	
Peak Daily TSS: Average Daily TSS Loading	2.33	1.326.74	

Misuse of Peaking Factors

 $\frac{MMBOD_{Conc}}{ADBOD_{Conc}} = 2.04 \quad MMBOD_{Conc} = 2.04(129) = 263 \frac{mg}{L}$

$$MMBOD_{Load} = 73429 \frac{m^3}{d} (263)(1/1000) = 19312 \frac{kg}{day}$$

Actual $MMBOD_{Load} = 12108 \frac{kg}{day} = \frac{19312}{12108} (100) = 159\%$

This results in a 59% over estimation.

Summary

- 24 WWTPs located throughout Georgia were evaluated
- Capacity of the facilities ranged from 37,850 m³/day (10 mgd) to 454,000 m³/day (120 mgd)
- All facilities used biological treatment in the form of activated sludge or some modification
- Correlations were established between influent flow and BOD concentration; influent BOD loading and effluent BOD, and monthly rainfall and influent BOD
- Peaking factors for flows, and BOD & TSS loadings established

Major Conclusions

- 1. A correlation between influent flow and influent BOD was established for 22 out of 24 facilities
- **2.** Influent BOD = -0.0004 (Q) + 210.3
- A correlation between influent BOD loading and effluent BOD concentration was established for 15 out of 24 facilities

4. Effluent BOD =-0.0001(Inf. BOD Load)+1.7284

- A correlation between monthly rainfall and influent BOD concentration was established for 22 out of 24 facilities
- 6. Influent BOD Conc.= -0.3987 (I) + 215.83
- 7. Peaking factors established for flows & loadings

Questions?

