Designing Single-Sludge Bionutrient Removal Systems

Richard O. Mines, Jr., Ph.D., P.E. Environmental Engineering Mercer University

2001 World Water & Environmental Resources Conference Orlando, FL

Activated Sludge Background

- Activated Sludge
 - Schematic
 - Microbial composition
 - Substrate utilization
 - Solids retention time (SRT)
 - Nitrification stoichiometry

Activated Sludge Background Continued

• Biokinetic Equations

- Substrate
- Biomass
- Sludge Production
- -Oxygen Requirements

ACTIVATED SLUDGE FLOW SCHEMATIC

Microbial Composition C_{60} H $_{87}$ O $_{23}$ N $_{12}$ P $_1$

MW = 1374

12.2 % Nitrogen by Weight

2.3% Phosphorus by Weight

Substrate Utilization

$$C + O_2 \xrightarrow{Heterotrophs} CO_2 + Energy$$

 $C + N + P + C_{60}H_{87}O_{23}N_{12}P \rightarrow New Biomass \quad C_{60}H_{87}O_{23}N_{12}P$

 $+ CO_2 + NH_3 + PO_4^-$

Solids Retention Time (SRT)

$SRT (days) = \frac{Total Biomass in System}{Biomass Wasted from System}$

Nitrification (neglecting synthesis)

$$NH_4^+ + 2O_2 \xrightarrow{Nitrifiers} NO_3^- + 2H^+ + H_2O_3$$

4.57 kg of oxygen required per kg of NH_4^+ - N oxidized

7.14 kg of alkalinity as $CaCO_3$ consumed per kg of NH_4^+ - N oxidized.

Effluent Soluble Substrate Concentration

$S_e = \frac{K_s (1+b SRT)}{SRT(Yk-b)-1}$

Biomass Concentration

$X = \frac{Y(S_o - S_e) SRT}{(1 + b SRT) \theta}$

Waste Sludge Production

$P_X = \frac{YQ(S_o - S_e)}{1 + b SRT}$

O₂ Requirements

$O_2 = Q(1+1.42Y)(S_o - S_e) + 1.42bXV + NOD$

$NOD = Q(TKN_o)(4.57)$

Biological Nitrogen Removal

• Schematic

Denitrification stoichiometry

• Pre-anoxic zone sizing

• Post-anoxic zone sizing

Pre- & Post-Denitrification Systems

Denitrification

 $6NO_3^- + 2CH_3OH \rightarrow 6NO_2^- + 2CO_2 + 4H_2O$

 $6NO_2^- + 3CH_3OH \rightarrow 3N_2 + 3CO_2 + 3H_2O + 6OH^-$

 $6NO_3^- + 5CH_3OH \xrightarrow{Denitrifiers} 3N_2 + 5CO_2 + 7H_2O + 6OH^-$

3.57 kg of alkalinity produced per kg of NO₃⁻ N reduced.
2.86 kg of oxygen available per kg of NO₃⁻ N reduced.
May 22, 2001 World Water & Environmental Resources Conferences 15

Pre-Anoxic Zone Sizing $SDNR_1 = 0.03(F/M)_1 + 0.029$

 $(F/M)_1 = Q S_o / (X V_1)$ (Burdick *et al.*, 1982)

 $SDNR_1 = Specific denitrification rate(pre-anoxic), days^{-1}$

 $V_{ANOXIC} = \frac{TNOR(1000 \text{ g}/\text{kg}) - 0.03(S_o)(Q)(1.06)^{T-20}}{0.029(X)(1.06)^{T-20}}$

Post-Anoxic Zone Sizing $SDNR_{2} = 0.12 (SRT)_{Overall}^{-0.706} (1.02)^{(T^{\circ}C - 20^{\circ}C)}$

(Burdick et al., 1982)

 $SDNR_{2} = Specific \ denitrification \ rate, d^{-1}$ $V_{Anoxic_{2}} = \frac{TNOR_{2} (1000 \ g / kg)}{(X)(SDNR_{2})}$

Enhanced Biological Phosphorus Removal (EBPR)

• Schematic: anaerobic zone precedes aerobic zone.

• Acinetobacter phosphorus composition

• Anaerobic or fermentation zone sizing

Anaerobic/Anoxic/Oxic System

Acinetobacter Composition

4 to 8 % Phosphorus by weight

Anaerobic/Fermentation Zone Sizing

- **P** Removed = $TP_0 SP$
- P Removed = mg/L of phosphorus removed,
- TP_o = Influent total phosphorus concentration into biological process, mg/L, and
- SP = Effluent soluble phosphorus from process, mg/L.

Volume of Anaerobic Zone COD:TP ratio = 20:1 to 43:1

 $V_{Anaerobic} = Q[0.2557(PRe\,moved) - 0.7242] \left(\frac{1d}{24h}\right)$

 $V_{anaerobic} = Volume of anaerobic zone, m³$

Equation developed from the data developed by Randall et al., 1992.

Volume of Anerobic Zone COD:TP ratio = 40:1 to 69:1

 $V_{Anaerobic} = Q[0.8850(PRe\,moved) - 2.3742] \left(\frac{1d}{24h}\right)$

 $V_{anaerobic} = Volume of anaerobic zone, m³$

Equation developed from the data developed by Randall et al., 1992.

Design Procedure

- Size the aerobic zone based on the "washout" point of *Nitrosomonas*.
- Size the pre-anoxic zone using the specific denitrification equation developed by Burdick et al., 1982.
- Size the anaerobic zone using the equations developed by Randall et al., 1992.

Heterotrophic Biokinetic Coefficients

Heterotrophic Biokinetic Constants at 20EC

Y= 0.6 g VSS/g BOD5b= 0.06 days⁻¹k= 5 days⁻¹ K_s = 60 mg/L BOD5

Heterotrophic Biokinetic Constants at 15EC

Y= 0.6 g VSS/g BOD5b= 0.05 days^{-1}k= 3.2 days^{-1} K_s = 39 mg/L

A temperature correction coefficient (1) of 1.04 was used for correcting b whereas a 1 of 1.09 was used for correcting k and K_s .

Autotrophic Biokinetic Coefficients

Nitrosomonas Biokinetic Constants at 20EC

Nitrosomonas Biokinetic Constants at 15EC

 Y_{NS} = 0.15 g VSS/g NH4 + - N b_{NS} = 0.04 days-1 k_{NS} = 1.95 days-1 K_{NS} = 10^{0.051 T-1.148} = 0.41 mg/L

A temperature correction coefficient (1) of 1.04 was used for correcting b whereas a 1 of 1.09 was used for correcting k and K_s .

Calculate Nitrosomonas Growth Rate

$$(\mu_{MAX})_{NS} = 0.47e^{0.098(T-15)} \left[\frac{DO}{K_{DO} + DO} \right] \left[1 - 0.833(7.2 - pH) \right]$$

$$\frac{1}{(SRT)_{\rm MIN}} = \frac{(\mu_{\rm MAX})_{NS}(NH_4^+ - N)_O}{K_{NS} + (NH_4^+ - N)_O} - b_{NS}$$

Calculate Design & Overall SRTs

 $(SRT)_{DESIGN} = (SRT)_{MIN}(SF)(PF)$

$(SRT)_{OVERALL} = (SRT)_{DESIGN} (MF)$

Multiplication Factor (MF)

$$MF = \frac{1}{\left[1 - A\right]\left[1 - B\right]}$$

A = Anaerobic zone fraction of total reactor volume

B = Anoxic zone fraction of total reactor volume

Calculate Effluent Substrate Concentration (S_e)

$$S_e = \frac{K_s \left[1 + b(SRT)_{OVERALL}\right]}{\left[(SRT)_{OVERALL}(Yk - b) - 1\right]}$$

Calculate Effluent NH₄⁺- N Concentration

$(NH_{4}^{+}-N)_{e} = \frac{K_{NS}[1+b_{NS}(SRT)_{DESIGN}]}{(SRT)_{DESIGN}[Y_{NS} k_{NS}-b_{NS}]-1}$

Calculate Nitrogen to be Oxidized (NO)

 $NO = TKN_o - (NH_4^+)_e - N_{SYN}$

$$N_{SYN} = \frac{Y(S_o - S_e) F_N}{[1 + b(SRT)_{OVERALL}]} + (X_e) F_N$$

Calculate Oxic Volume

 $= \frac{Q(SRT)_{DESIGN}}{X} \qquad \frac{Y(S_o - S_e)}{1 + b(SRT)_{DESIGN}} +$ Voxic = X_L

Anoxic Zone Calculations

$N = \frac{NO(Q)}{(MLR + RAS + Q)}$

N = Effluent & MLR nitrate concentration, mg/L

Mass of Nitrates to be Removed in Anoxic Zone

$$(NO_{3}-N)_{EQ} = (DO)_{MLR} \left(0.35 \frac{g NO_{3}-N}{g O_{2}}\right) (MLR) \left(\frac{1kg}{1000g}\right)$$
$$NOR = \left[\left(RAS + MLR\right) N \right] \left(\frac{1 kg}{1000g}\right)$$

$$TNOR = NOR + (NO_3 - N)_{EQ}$$

Calculate Anoxic Volume

$V_{ANOXIC} = \frac{TNOR(1000 \text{ g}/\text{kg}) - 0.03(S_o)(Q)(1.06)^{T-20}}{0.029(X)(1.06)^{T-20}}$

Sludge Production & New Overall SRT

$$P_X = \left[\frac{Y(S_o - S_e)}{1 + b (SRT)_{OVERALL}} + X_L\right] (Q) \left(\frac{1kg}{1000g}\right)$$

$$(SRT)_{OVERALL} = \frac{X \left(V_{OXIC} + V_{ANOXIC} + V_{ANAEROBIC} \right)}{P_X}$$

Check SRT values

If the new overall SRT is not within 5% of the old overall SRT, the procedure should be repeated.

Oxygen Requirements

 $O_2 = CBOD + NOD - DOC$

Alkalinity Requirements

$ALK_{e} = ALK_{o} - 7.14 (NO) + 3.57 [NO - N]$

Conclusions

- A step-by-step procedure has been presented for designing a three-stage, nitrogen and phosphorus removal system.
- Biokinetic equations developed by *Lawrence & McCarty (1970)* were used for sizing the aerobic zone with *Nitrosomonas* being the growth limiting microbe.

Conclusions continued

- The pre-anoxic zone was sized based on the specific denitrification equation developed by *Burdick et al.*, 1982.
- The anaerobic or fermentation zone was sized based on the equations developed from data presented by *Randall et al.*, 1992.

Conclusions continued

The 4-stage, pre- and post- anoxic BNR system has been validated and presented in the following paper: *Mines, R.O.(1997)*"Design and Modeling of 4-Stage Single-Sludge Systems", *Advances in Environmental Research, 1* (3) 323-332.

 Plans are to validate the anaerobic equations after collecting data from an A²/O facility.