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Abstract

Bioenhanced operation of municipal solid waste (MSW) landfills can accelerate

the stabilization of the organic fraction of the waste.  Such enhancement promotes biogas

energy production while reducing the potential for long-term adverse environmental

impacts.  Bioenhancement has also been considered as a source reduction technique at

problematic landfills.  Bioenhancement primarily involves moisture control using

leachate recirculation through the landfill, but also may include nutrient and buffer

addition, aerobic decomposition within the landfill for temperature control, and MSW

composition control.  

Because leachate recirculation has been found to be the most practical approach

to moisture content control, full-scale bioenhancement efforts tend to focus on this

technique.  Proper design and operation of the leachate recirculating landfill requires a

more in-depth understanding of the hydraulics of leachate transport within the landfill

than is presently available.  Consequently, the objectives of the study were to evaluate the

effect of leachate recirculation on the moisture saturation levels of the waste in the

landfill, determine the area influenced by different recirculation methodologies, and to

develop a design strategy.  A modified form of SUTRA (Saturated-Unsaturated

Transport), a United States Geological Survey (USGS) unsaturated flow and solute

transport program was used to meet these objectives.  Two of the most common types of

leachate recirculation methodologies (trench infiltration and vertical wells) were

modeled.  The variables evaluated included leachate input rates, frequency of operation
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of the recirculation system, the permeability of intermediate cover materials, permeability

of the waste, and heterogeneity effects.  Modeling results indicated that lateral spreading

increased with decreasing permeabilities and increasing application rates,  However, as

permeability decreased, the upward movement of leachate increased which could result

in surface seep problems.  Waste mass anisotropies may result in an increase in lateral

spreading and thus the impact area but may also cause side seep problems.  The study of

waste mass heterogeneities indicated preferential flow through high permeability areas

and around low permeability materials but did not significantly affect lateral movement.

The use of low permeability daily cover materials may significantly impede leachate

movement.  Therefore, low permeability materials should be avoided or breached prior to

the placement of the next waste layer.

In addition to studying hypothetical leachate recirculation scenarios, four leachate

recirculation field studies were modeled; the Mill Seat Landfill, Monroe County, New

York, the Delaware Solid Waste Authority’s Leachate Recirculation Test Cells, the Yolo

County Landfill Demonstration Project, and the University of Central Florida -

Environmental Protection Agency (UCF/EPA) Test Cell.  Predicted leachate production

was compared to measured values.  This effort at model verification indicated channeled

flow is a major leachate movement mechanism which must be studied and accounted for

in future models.  Results also indicated that increased data collection efforts are

imperative to develop and applying models to full-scale operations.
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