pC-pH Diagram

pH

5

10

log concentration, pc

[Ac]⁻

[H⁺]

H₂O

C₅₄H₂₆O₆

[HAc]
(#1) Develop pC - pH diagram for 10^{-4} M HAc

Equilibrium equations

\[\text{HAc} \rightleftharpoons \text{H}^+ + \text{Ac}^- \]

\[K_a = 10^{-4.7} = \frac{[\text{H}^+][\text{Ac}^-]}{[\text{HAc}]} \]

\[K_w = [\text{H}^+][\text{OH}^-] = 10^{-14} \]

Mass Balance

\[[\text{HAc}] + [\text{Ac}^-] = C_{T,\text{Ac}^-} = 10^{-4} \text{ M} \]

Charge balance (also the proton condition)

\[[\text{H}^+] = [\text{OH}^-] + [\text{Ac}^-] \]

Plot all species vs. pH

- For Kw Expression \(\Rightarrow \) In log form
 \[\log K_w = \log ([\text{H}^+] + [\text{OH}^-]) \]
 \[pOH = 14 - pH \rightarrow \text{slope} = -1 \]
 \[y = b + mx \]
 plot point on graph
 \[w/ -1 \text{ slope} \]
 \[(0, 14) \]
 line labeled [OH^-] on graph

- By definition
 \[-\log ([\text{H}^+]) = pH \]
 \[pC = pH \rightarrow \text{line labeled [H}^+] \text{ on graph} \]

Now draw lines for [Ac^-] and [HAc]

Need to relate concentrations vs. pH and constants

- For Ac^- Combine \(K_a \) and m.b. equations to eliminate [HAc]
 \[K_a = \frac{[\text{H}^+][\text{Ac}^-]}{C_T - [\text{Ac}^-]} \]
solve for \([A^-]\):

\[
[A^-] = \frac{K_a \ C_T}{([H^+]) + K_a}
\]

Now - check around system point:

If \(K_a \gg [H^+]\) \(\Rightarrow \) \(pH > pK_a\)

\([A^-] = C_T = 10^{-y}\)

\(pC_{A^-} = 4\) when \(pH > 4.7\)

If \([H^+] \gg K_a\) \(\Rightarrow \) \(pK_a > pH\)

Again combine \(K_a + m.B\) equations:

\[
\frac{K_a \ C_{T,A^-}}{[H^+]} = [A^-]
\]

\(-\log K_a - \log C_{T,A^-} = (-\log [H^+]) = -\log [A^-]\)

\(p[A^-] = pC_{T,A^-} + pK_a - pH\)

\(y = \frac{pK_a}{b}\)

slope = -1

when \(pH = pK_a = 4.7\)

\(p[A^-] = pC_{T,A^-} = 4\)

\((4.7, 4)\) slope -1

line marked \([A^-]\) in figure

- Use similar procedure for \([HA^-]\) line - refer to lecture note handout

- remember to check around system point
(#2) Find equilibrium species conc?

\[\text{HAc } \rightleftharpoons \text{H}^+ + \text{Ac}^- \]

\[\text{Ac}^- + \text{H}_2\text{O} \rightleftharpoons \text{HAc} + \text{OH}^- \]

Proton condition \[\frac{[\text{H}^+]}{[\text{OH}^-]} = \frac{[\text{Ac}^-]}{[\text{HAc}]} \]

see point on graph representing solution

\[[\text{H}^+] = 10^{-4.4} \quad \text{pH} = 4.4 \]

\[[\text{HAc}] = 10^{-4} \]

\[[\text{Ac}^-] = 10^{-4.4} \]

\[[\text{OH}^-] = 10^{-9.5} \]

(#3) Find conc of species if \(10^{-4} \text{ M}\) NaAc added

\[\text{NaAc } \rightleftharpoons \text{Na}^+ + \text{Ac}^- \]

\[\text{Ac}^- + \text{H}_2\text{O} \rightleftharpoons \text{HAc} + \text{OH}^- \]

\[\text{HAc } \rightleftharpoons \text{H}^+ + \text{Ac}^- \]

Proton condition \[\frac{[\text{H}^+][\text{HAc}]}{[\text{OH}^-]} = \frac{[\text{Ac}^-]}{[\text{HAc}]} \]

\[\text{pH} \approx 7.2 \quad [\text{H}^+] = 10^{-7.2} \]

\[[\text{HAc}] \approx 10^{-6.8} \]

\[[\text{Ac}^-] \approx 10^{-4} \]

\[[\text{OH}^-] \approx 10^{-6.8} \]