EGR 107 Introduction to Engineering Design

Project Specification, Design Criteria, & DESIGN SELECTION

The Knack

Design Criteria include both Feasibility and Merit

- Developed from specifications to
 - Ensure compliance with client's requirements
 - Discriminate between designs
 - Identify a 'best' design
- Two Types
 - Feasibility Criteria
 - Eliminate infeasible designs
 - Merit Criteria
 - Identify characteristics of 'best' designs

<u>Feasibility Criteria</u> provide design constraints

- Factors that limit the scope of a project
- Normally expressed as constraints
 - Unit must weigh less than 100 lbs.
 - Unit must accelerate to a velocity of 60 mph in less than 10 seconds.
- Go/No-Go Criteria

– Feasible/Not-Feasible

• Project Specification are a primary source

<u>Merit Criteria</u> used for discriminating between design ideas

- Factors that promote <u>discrimination between</u>
 <u>FEASIBLE</u> design alternatives
- Provide a logical method for selecting the "best" design
- Should be presented in a form that will facilitate the decision making process

Merit Criteria are...

- Specific while still providing a basis for choosing between alternatives
- Examples include:
 - low unit production cost, low shipping cost, low storage cost, etc.

high acceleration, high velocity, high efficiency, etc.

- Project Specification are a good starting point
- Ask: What is the overall project goal?

Design Criteria for the Toothpick Bridge Project

• Design Specification (handout)

• Feasibility Criteria (engineer)

• Merit Criteria (engineer)

Feasibility Analysis

- Eliminate some of the design concepts
- Reveal ways that other alternatives may overcome their limitations
- Produces at least two feasible alternatives
 - In practice, this will not always occur
 - In this class, it must!!
 - Your project grade depends on it.
- A single table comparing each design to the feasibility criteria with pass/fail (✓ or X) notation is a common approach

- Good visual of why designs are succeeding or failing

Treadle Pump Design Example

A treadle pump is defined as a foot operated single action double cylinder piston pump for low lift irrigation.

Design Specifications for Treadle Pump Design Project

 Pump must provide suction-lift (S) and pressure delivery (P)

• Must produce at least 3 m³/hr

• Must cost less than US\$70

Specifications for Treadle Pumps found in Africa

Pump Name	Туре	Volume (m³/hr)	Price (US\$)
Swiss "concrete"	Suction-lift (S)	1.7	120 - 160
Bangladesh	Pressure delivery (P) and S	3.8 – 5.8	78
Deep well pump	S	1.6	156
Compact	S & P	2.6 - 3.1	45 – 52
Masvingo	Р	5	100
Shoroma	Р	2.5	60 - 145
Chova	S & P	1.7	86 (S), 97 (P)

Source: http://www.appropedia.org/Treadle_pump_design_optimization

Feasibility Analysis on a Treadle Pump Design Project

Pump Name	Туре	Volume (m³/hr)	Price (US\$)
Swiss "concrete"	Х	X	Х
Bangladesh	\checkmark	\checkmark	X (but close \$78)
Deep well pump	Х	Х	Х
Compact	\checkmark	\checkmark	\checkmark
Masvingo	Х	\checkmark	X
Shoroma	Х	Х	\checkmark
Chova	\checkmark	Х	Х

Likely explore using Compact pump; may also consider Bangladesh

Merit Analysis provides...

- A Structured way to make a logical, documentable decision concerning the 'best' design alternative
- It is not a 'foolproof' way of selecting the best design
- Also applies to problem solution, manufacturing process, product supplier, etc.

Merit Analysis provides...continued...

- Provides a point of departure for engaging in intelligent debate over design decisions
- Shows why one of the alternatives was selected over the others
- Provides basis for retracing the steps that led to the decision
- Better than simply declaring victory based on some sort of "gut feeling"

Weighted Average Merit Analysis – the process

- 1. Criteria Importance
- 2. Develop Merit Curves
- 3. Merit Factor Assignment
- 4. Calculation Step One
- 5. Calculation Step Two
- Consider Results

1. Criteria Importance

Criterion	Points
Functionality	40
Production cost	30
Operating cost	15
System weight	10
Aesthetics	5
Total	100

2. Develop Merit Curves – Examples for Operating Cost and Functionality

4. Calculation Step One

 Calculate merit associated with each criterion for each design

• Criterion merit = (weight) × (merit factor)

5. Calculation Step Two

 Calculate total merit associated with each design

Example Merit Analysis Table – for Design Alternative #1

	Weight (%)	Feature Attribute	Merit Factor	Total Merit
Functionality	40	7	7	280
Production cost	30	\$1000/unit	6	180
Operating cost	15	\$2.00/hr	6	90
System weight	10	60 lbs	6	60
Aesthetics	5	10	3	15
Total	100			625

Recall we had example merit curves for Functionality and Operating Cost

Making a Design Decision from weighted average merit analysis

- Discuss the scoring of the designs and consider:
 - What would a 'perfect' design score?
 - How different are the score numbers?
 - Which merit criterion are making the biggest difference?
 - Is one merit criterion driving the decision?
 - Can the merit criterion, weighting, curves, etc. be improved?

Example Merit Analysis

Merit Criteria	Weight (%)
Functionality	40
Production cost	30
Operating cost	15
System weight	10
Aesthetics	5
Total	100

Alternative Design #1			
Feature Attribute	Merit Factor	Total Merit	
7	7	280	
\$1000/unit	6	180	
\$2.00/hr	6	90	
60 lbs	6	60	
10	3	15	
		625	

	Alternative Design #2	
Feature	Morit Eactor	Total Marit
Attribute		
9	9	360
\$500/unit	8	240
\$4.00/hr	2	30
70 lbs	2	20
50	7	35
		685

	Alternative Design #3		
Feature	Merit Factor	Total Morit	
Attribute	Went ractor	Total Ment	
8	8	320	
\$750/unit	7	210	
\$3.00/hr	4	60	
50 lbs	10	100	
25	5	25	
		715	