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Kinematics of Displacement and Deformation: Strain 

 

A body is deformed/displaced from its initial configuration to its final configuration (see Figure 

1).  A point p in the initial configuration has coordinates xi; the same point moves to P in the 

final configuration, with coordinates Xi.  A nearby point to p, denoted as q, is a distance ds from 

p in the direction of the unit vector n. Point q moves to Q in the final configuration; it is a 

distance dS from P in the direction of the unit vector N. 

 

𝒓 = 𝑥𝑖𝒆𝑖    (1) 

 

       𝑑𝒓 = 𝑑𝑥𝑖𝒆𝑖 = 𝑑𝑠𝒏 = 𝑑𝑠𝑛𝑖𝒆𝑖  (2) 

 

𝑹 = 𝑋𝑖𝒆𝑖    (3) 

 

𝑑𝑹 = 𝑑𝑋𝑖𝒆𝑖 = 𝑑𝑆𝑵 = 𝑑𝑆𝑁𝑖𝒆𝑖 (4) 

 

 

 

 

The general change in configuration from initial (undeformed ) to final (deformed) may be 

thought of as a one-to-one mapping of points from initial position xi to final position Xi; i.e., 

 

𝑋𝑖 = 𝑋𝑖(𝑥1, 𝑥2, 𝑥3)      (5) 

 

or the inverse, 

 

𝑥𝑖 = 𝑥𝑖(𝑋1, 𝑋2, 𝑋)      (6) 

 

From which we may write the differentials, 

 

𝑑𝑋𝑖 =
𝜕𝑋𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗       (7) 

 

𝑑𝑥𝑖 =
𝜕𝑥𝑖

𝜕𝑋𝑗
𝑑𝑋𝑗       (8) 

 

If we choose the choose the xi (undeformed coordinates) as the independent variables, and 

express the Xi in terms of them, as in (5), we are employing the so-called Lagrangian, or 

material, description of the deformation. 

 

If we choose the choose the Xi (deformed coordinates) as the independent variables, and express 

the xi in terms of them, as in (6), we are employing the so-called Eulerian, or spatial, description 

of the deformation. 

 

I. Extensional strain – Change in length of a line element 

 

The square of the length of a line element before and after deformation is: 



 

From (2) and (8): (𝑑𝑠)2 = |𝑑𝒓|2 = 𝑑𝑥𝑘𝑑𝑥𝑘 =
𝜕𝑥𝑘

𝜕𝑋𝑖

𝜕𝑥𝑘

𝜕𝑋𝑗
𝑑𝑋𝑖𝑑𝑋𝑗 

 

From (4) and (7): (𝑑𝑆)2 = |𝑑𝑹|2 = 𝑑𝑋𝑘𝑑𝑋𝑘 =
𝜕𝑋𝑘

𝜕𝑥𝑖

𝜕𝑋𝑘

𝜕𝑥𝑗
𝑑𝑥𝑖𝑑𝑥𝑗  

 

The change in the square of the length is: 

 

(𝑑𝑆)2 − (𝑑𝑠)2 =
𝜕𝑋𝑘

𝜕𝑥𝑖

𝜕𝑋𝑘

𝜕𝑥𝑗
𝑑𝑥𝑖𝑑𝑥𝑗 −  𝑑𝑥𝑖𝑑𝑥𝑖 

= (
𝜕𝑋𝑘

𝜕𝑥𝑖

𝜕𝑋𝑘

𝜕𝑥𝑗
− 𝛿𝑖𝑗)  𝑑𝑥𝑖𝑑𝑥𝑗 (Lagrangian)  (9) 

 

(𝑑𝑆)2 − (𝑑𝑠)2 = (𝛿𝑖𝑗 −
𝜕𝑥𝑘

𝜕𝑋𝑖

𝜕𝑥𝑘

𝜕𝑋𝑗
) 𝑑𝑋𝑖𝑑𝑋𝑗 (Eulerian)  (10) 

 

Define the Lagrangian strain tensor 

  

 

     (11) 

 

Then, by (9) 

(𝑑𝑆)2 − (𝑑𝑠)2

(𝑑𝑠)2
= 2𝜀𝑖𝑗

𝐿
𝑑𝑥𝑖

𝑑𝑠

𝑑𝑥𝑗

𝑑𝑠
= 2𝜀𝑖𝑗

𝐿 𝑛𝑖𝑛𝑗  

Therefore, let  

 

𝜀(𝑛)
𝐿 =

1

2

(𝑑𝑆)2−(𝑑𝑠)2

(𝑑𝑠)2
= 𝜀𝑖𝑗

𝐿 𝑛𝑖𝑛𝑗    (12) 

 

be defined as the Lagrangian measure of extensional strain of a line element in the direction n in 

the undeformed configuration. 

 

Similarly, define the Eulerian strain tensor 

  

 

   (13) 

  

Then, by (10) 

 

(𝑑𝑆)2 − (𝑑𝑠)2

(𝑑𝑆)2
= 2𝜀𝑖𝑗

𝐸
𝑑𝑋𝑖

𝑑𝑆

𝑑𝑋𝑗

𝑑𝑆
= 2𝜀𝑖𝑗

𝐸 𝑁𝑖𝑁𝑗 

 

Therefore, let 

𝜀𝑖𝑗
𝐿 =

1

2
(

𝜕𝑋𝑘

𝜕𝑥𝑖

𝜕𝑋𝑘

𝜕𝑥𝑗
− 𝛿𝑖𝑗) 

𝜀𝑖𝑗
𝐸 =

1

2
(𝛿𝑖𝑗 −

𝜕𝑥𝑘

𝜕𝑋𝑖

𝜕𝑥𝑘

𝜕𝑋𝑗
) 



  

𝜀(𝑛)
𝐸 =

1

2

(𝑑𝑆)2−(𝑑𝑠)2

(𝑑𝑆)2
= 𝜀𝑖𝑗

𝐸 𝑁𝑖𝑁𝑗    (14) 

 

be defined as the Eulerian measure of extensional strain of a line element in the direction of N in 

the deformed configuration. 

 

By their definitions, both the Lagrangian strain tensor (11) and the Eulerian strain tensor (13) are 

symmetric, second order tensors, and therefore transform under a coordinate rotation according 

to the rules of tensor transformation. 

 

II. Components of strain in terms of displacements 

 

The displacement vector is defined (Figure 1) as: 

 

u = R-r 

 

or, in terms of components, 

 

ui = Xi – xi  

 

If the displacement components are expressed in terms of the undeformed coordinates as 

independent variables, then the following derivatives m y be defined: 

 
𝜕𝑢𝑖

𝜕𝑥𝑗
=

𝜕𝑋𝑖

𝜕𝑥𝑗
− 𝛿𝑖𝑗  ; or  

𝜕𝑋𝑖

𝜕𝑥𝑗
= 𝛿𝑖𝑗 +

𝜕𝑢𝑖

𝜕𝑥𝑗
     (15) 

 

Alternatively, if the displacement components are expressed in terms of the deformed 

coordinates as independent variables, then the following derivatives may be defined: 

 
𝜕𝑢𝑖

𝜕𝑋𝑗
= 𝛿𝑖𝑗 −

𝜕𝑥𝑖

𝜕𝑋𝑗
 ; or  

𝜕𝑥𝑖

𝜕𝑋𝑗
= 𝛿𝑖𝑗 −

𝜕𝑢𝑖

𝜕𝑥𝑗
    (16) 

 

Substitute (15) into (11): 

 

𝜀𝑖𝑗
𝐿 =

1

2
[(𝛿𝑘𝑖 +

𝜕𝑢𝑘

𝜕𝑥𝑖
) (𝛿𝑘𝑗 +

𝜕𝑢𝑘

𝜕𝑥𝑗
) − 𝛿𝑖𝑗] 

 

=
1

2
[𝛿𝑘𝑖𝛿𝑘𝑗 + 𝛿𝑘𝑖

𝜕𝑢𝑘

𝜕𝑥𝑗
+

𝜕𝑢𝑘

𝜕𝑥𝑖
𝛿𝑘𝑗 +

𝜕𝑢𝑘

𝜕𝑥𝑖

𝜕𝑢𝑘

𝜕𝑥𝑗
− 𝛿𝑖𝑗] 

 

𝜀𝑖𝑗
𝐿 =

1

2
[

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝑢𝑘

𝜕𝑥𝑖

𝜕𝑢𝑘

𝜕𝑥𝑗
]   (17) 

 

Similarly, by substituting (16) into (13), we get 



p

qr

Q

N

n

x3, X3

x2, X2
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𝜀𝑖𝑗
𝐸 =

1

2
[

𝜕𝑢𝑖

𝜕𝑋𝑗
+

𝜕𝑢𝑗

𝜕𝑋𝑖
−

𝜕𝑢𝑘

𝜕𝑋𝑖

𝜕𝑢𝑘

𝜕𝑋𝑗
]   (18) 

 

Therefore, components of each of our strains tensors may be expressed in terms of displacement 

gradients (derivatives of displacement components with respect to position). 

 

From now on, we will confine our discussion to the Lagrangian strain tensor 𝜀𝑖𝑗
𝐿  (we could 

perform a parallel development on the Eulerian strain tensor, and obtain similar results).  We 

may thus employ the notation ( ),𝑖 =
𝜕( )

𝜕𝑥𝑖
 without ambiguity; that is all derivatives are with 

respect to the undeformed coordinates 𝑥1, 𝑥2, 𝑥3, and all field quantities are expressed in terms of  

the undeformed coordinates.  Therefore, equation (14) may be written as 

 

𝜀𝑖𝑗
𝐿 =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑢𝑘,𝑖𝑢𝑘,𝑗)    (19) 

 

III. Shear strain: changes in angle between line elements. 

 

        n•m = cosφ 

         

        N•M = cosΦ 

 

        𝑁𝑖 =
𝑑𝑋𝑖

𝑑𝑆
 (from (4)) 

 

        𝑛𝑖 =
𝑑𝑥𝑖

𝑑𝑠
 (from (2)) 

 

 

 

 

 

𝑁𝑖 =
𝑑𝑋𝑖

𝑑𝑆
=

𝑑𝑋𝑖

𝑑𝑠

𝑑𝑠

𝑑𝑆
= (

𝜕𝑋𝑖

𝜕𝑥𝑗

𝑑𝑥𝑗

𝑑𝑠
)

𝑑𝑠

𝑑𝑆
 so that  

𝑑𝑆

𝑑𝑠
𝑁𝑖 =

𝜕𝑋𝑖

𝜕𝑥𝑗

𝑑𝑥𝑗

𝑑𝑠
 

 

Recall, 

 

𝜀(𝑛)
𝐿 =

1

2

(𝑑𝑆)2−(𝑑𝑠)2

(𝑑𝑠)2
=

1

2
((

𝑑𝑆

𝑑𝑠
)

2
− 1) so that  

𝑑𝑆

𝑑𝑠
= (1 + 2𝜀𝑛)

1
2⁄  

 

Substitute into the above to get: 

 

(1 + 2𝜀(𝑛)
𝐿 )

1
2⁄

𝑁𝑖 =
𝜕𝑋𝑖

𝜕𝑥𝑗
𝑛𝑗     (20) 



p

o

O

C

x3, X3

x2, X2

x1, X1
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u

Similarly,   (1 + 2𝜀(𝑚)
𝐿 )

1
2⁄

𝑀𝑖 =
𝜕𝑋𝑖

𝜕𝑥𝑗
𝑚𝑗     (21) 

Multiply (20) by (21) 

 

(1 + 2𝜀(𝑛)
𝐿 )

1
2⁄

(1 + 2𝜀(𝑚)
𝐿 )

1
2⁄

𝑁𝑖𝑀𝑖 =
𝜕𝑋𝑖

𝜕𝑥𝑗

𝜕𝑋𝑖

𝜕𝑥𝑘
𝑛𝑗𝑚𝑘 

 

(1 + 2𝜀(𝑛)
𝐿 )

1
2⁄

(1 + 2𝜀(𝑚)
𝐿 )

1
2⁄

𝑁𝑖𝑀𝑖 = (
𝜕𝑋𝑖

𝜕𝑥𝑗

𝜕𝑋𝑖

𝜕𝑥𝑘
− 𝛿𝑗𝑘 + 𝛿𝑗𝑘) 𝑛𝑗𝑚𝑘 

 

(1 + 2𝜀(𝑛)
𝐿 )

1
2⁄

(1 + 2𝜀(𝑚)
𝐿 )

1
2⁄

𝑐𝑜𝑠𝛷 = 2𝜀𝑗𝑘
𝐿 𝑛𝑗𝑚𝑘 + 𝑐𝑜𝑠𝜑 

 

Therefore, let  

 

𝜀(𝑛𝑚)
𝐿 ≡

1

2
(1 + 2𝜀(𝑛)

𝐿 )
1

2⁄
(1 + 2𝜀(𝑚)

𝐿 )
1

2⁄
𝑐𝑜𝑠𝛷 −

1

2
 𝑐𝑜𝑠𝜑 = 𝜀𝑖𝑗

𝐿 𝑛𝑖𝑚𝑗  (22) 

 

be defined as the Lagrangian measure of shear strain between two line elements in the directions 

n and m in the undeformed configuration. 

 

IV. Components of strain for a body undergoing a general rigid displacement. 

 

      x1’, x2’, x3’ axes fixed in the body 

 

      C = Ciei translation of o 

 

      r = xiei;  R = Xiei = C + r’ 

 

      r’ = xj’ej` = xjej` = xjαjiei 

 

where αji is the rotation matrix defining the rotation 

of the body. 

 

Therefore, 

 

R = (Ci + xjαji)ei 

 

The displacement of point p is 

 

u = R – r 

 

𝑢𝑖 = 𝐶𝑖 + 𝑥𝑗𝛼𝑗𝑖 − 𝑥𝑖 = 𝐶𝑖 + (∝𝑗𝑖− 𝛿𝑗𝑖)𝑥𝑗  

 

This is the displacement of an arbitrary point in the body, expressed in terms of its coordinates in 

the initial configuration (Lagrangian description). 



 

The displacement gradients are  

 

𝑢𝑖,𝑘 = (∝𝑗𝑖− 𝛿𝑗𝑖)𝑥𝑗,𝑘 = (∝𝑗𝑖− 𝛿𝑗𝑖)𝛿𝑗𝑘 =∝𝑘𝑖− 𝛿𝑘𝑖 

 

We will substitute this into equation (19), the Lagrangian strain tensor in terms of the 

displacements: 

 

𝜀𝑖𝑗
𝐿 =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑢𝑘,𝑖𝑢𝑘,𝑗) 

 

which gives 

 

𝜀𝑖𝑗
𝐿 =

1

2
(∝𝑗𝑖− 𝛿𝑗𝑖 +∝𝑖𝑗− 𝛿𝑖𝑗 + (∝𝑖𝑘− 𝛿𝑖𝑘)(∝𝑗𝑘− 𝛿𝑗𝑘)) 

 

=
1

2
(∝𝑗𝑖− 𝛿𝑗𝑖 +∝𝑖𝑗− 𝛿𝑖𝑗 +∝𝑖𝑘∝𝑗𝑘−∝𝑖𝑘 𝛿𝑗𝑘 − 𝛿𝑖𝑘 ∝𝑗𝑘+ 𝛿𝑖𝑘𝛿𝑗𝑘) 

 

=
1

2
(∝𝑗𝑖− 𝛿𝑗𝑖 +∝𝑖𝑗− 𝛿𝑖𝑗 + 𝛿𝑖𝑗 −∝𝑖𝑗−∝𝑗𝑖+ 𝛿𝑖𝑗) 

 

𝜀𝑖𝑗
𝐿 = 0 

 

Therefore, the Lagrangian strain tensor corresponding to a general rigid displacement is zero. 

 

The differential of displacement may be written as: 

 

𝑑𝑢𝑖 = 𝑢𝑖,𝑗𝑑𝑥𝑗 = [
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑢𝑘,𝑖𝑢𝑘,𝑗) +] 𝑑𝑥𝑗 

 

𝑑𝑢𝑖 = [𝜀𝑖𝑗
𝐿 + 𝜔𝑖𝑗

𝐿 ] 𝑑𝑥𝑗  

 

where 

 

ω𝑖𝑗
𝐿 ≡

1

2
(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖 − 𝑢𝑘,𝑖𝑢𝑘,𝑗) 

 

is the Lagrangian rotation tensor. As can be seen from the foregoing, for a rigid-body motion 

 

ω𝑖𝑗
𝐿 = 𝛼𝑗𝑖 − 𝛿𝑗𝑖   and  𝑢𝑖 = 𝐶𝑖 + (𝛼𝑗𝑖 − 𝛿𝑗𝑖)𝑥𝑗 = 𝐶𝑖 + ω𝑖𝑗

𝐿 𝑥𝑗  

 

V. Physical interpretation of the components of the Lagrangian strain tensor 

 



A. Diagonal components.  Recall that, from equation (12), the Lagrangian 

extensional strain, defined as one-half the change in the square of the length divided by 

the square of the original length of a line element initially in the direction n is 

 

𝜀(𝑛)
𝐿 =

1

2

(𝑑𝑆)2 − (𝑑𝑠)2

(𝑑𝑠)2
= 𝜀𝑖𝑗

𝐿 𝑛𝑖𝑛𝑗  

If we let n = e1, then 

 

𝜀(1)
𝐿 = 𝜀11

𝐿  

 

In other words the 1-1 component of the Lagrangian strain tensor represents the 

Lagrangian extensional strain of a line element initially in the x1 direction. Similarly, in 

the x2 and x3 directions:  

 

𝜀(2)
𝐿 = 𝜀22

𝐿  

𝜀(3)
𝐿 = 𝜀33

𝐿  

 

 

B. Off-diagonal components.  Recall that, from equation (22), the Lagrangian shear 

strain between two line elements initially in the directions of unit vectors n and m is: 

 

𝜀(𝑛𝑚)
𝐿 ≡

1

2
(1 + 2𝜀(𝑛)

𝐿 )
1

2⁄
(1 + 2𝜀(𝑚)

𝐿 )
1

2⁄
𝑐𝑜𝑠𝛷 −

1

2
 𝑐𝑜𝑠𝜑 = 𝜀𝑖𝑗

𝐿 𝑛𝑖𝑚𝑗 

If we let n = e1 and m = e2 then 

 

𝜀(𝑛𝑚)
𝐿 ≡

1

2
(1 + 2𝜀11

𝐿 )
1

2⁄ (1 + 2𝜀22
𝐿 )

1
2⁄ 𝑐𝑜𝑠𝛷 = 𝜀12

𝐿  

 

Similarly in the 2-3 and 1-3 directions., So the off-diagonal terms of the Lagrangian 

strain tensor represent the shear strains between two line elements initially oriented in the 

coordinate directions. 

 

VI. Small displacement gradients. 

 

The formulation to this point gives an exact description of the geometry of displacements and 

deformations; no restrictions have been placed on the magnitudes of the deformation nor on the 

rigid-body motion. Consider now the case in which displacement gradients are small; that is 

 
𝜕𝑢𝑖

𝜕𝑥𝑗
≪ 1  and   

𝜕𝑢𝑖

𝜕𝑋𝑗
≪ 1 

 

This means that the difference in displacement between two neighboring points is small in 

comparison to the distance between the points.  If this is the case, we can make the following 

observations. 

 

A. In the Lagrangian strain tensor: 



 

𝜀𝑖𝑗
𝐿 =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖 + 𝑢𝑘,𝑖𝑢𝑘,𝑗) 

 

the product terms are much smaller than the first two terms on the left hand side, and may 

be neglected, leading to the so-called “linear strain tensor” 

 

𝜀𝑖𝑗
𝐿 ≅ 𝜀𝑖𝑗 =

1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

 

This may be considered an approximation to the “exact” Lagrangian strain tensor. We 

term it this linear strain tensor because its components are linear functions of the 

displacement components. 

 

B. Consider some arbitrary function F expressed in terms of the deformed 

coordinates, F(X1,X2,X3).  If we calculate its derivatives with respect to the undeformed 

coordinates xi, we get 

 

𝜕𝐹

𝜕𝑥𝑖
=

𝜕𝐹

𝜕𝑋𝑗

𝜕𝑋𝑗

𝜕𝑥𝑖
=

𝜕𝐹

𝜕𝑋𝑗
(

𝜕𝑢𝑗

𝜕𝑥𝑖
+ 𝛿𝑖𝑗) =

𝜕𝐹

𝜕𝑋𝑗

𝜕𝑢𝑗

𝜕𝑥𝑖
+

𝜕𝐹

𝜕𝑋𝑖
 

 

If displacement gradients are small, then the second term on the right side is much larger 

than the first, and  

 
𝜕𝐹

𝜕𝑥𝑖
≅

𝜕𝐹

𝜕𝑋𝑖
 

 

That is, in the case of small displacement gradients, it is immaterial whether a derivative 

is calculated with respect to the deformed coordinates (Xi) or the undeformed coordinates 

(xi).  In this case, the Eulerian strain tensor: 

 

𝜀𝑖𝑗
𝐸 =

1

2
[
𝜕𝑢𝑖

𝜕𝑋𝑗
+

𝜕𝑢𝑗

𝜕𝑋𝑖
−

𝜕𝑢𝑘

𝜕𝑋𝑖

𝜕𝑢𝑘

𝜕𝑋𝑗
] ≅

1

2
[
𝜕𝑢𝑖

𝜕𝑋𝑗
+

𝜕𝑢𝑗

𝜕𝑋𝑖
] ≅

1

2
[
𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
] 

 

𝜀𝑖𝑗
𝐸 ≅ 𝜀𝑖𝑗

𝐿 ≅ 𝜀𝑖𝑗 ≅
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) 

 

So, the Eulerian strain tensor is essentially indistinguishable from the Lagrangian strain 

tensor; both are approximated by the linear strain tensor; and the two descriptions of the 

deformation (material and spatial) coincide. 

 

C. Our basic definitions of strain. 

 

1) Extensional strain.  

 



𝜀(𝑛) ≡
1

2

(𝑑𝑆)2 − (𝑑𝑠)2

(𝑑𝑠)2
= 𝜀𝑖𝑗𝑛𝑖𝑛𝑗 ≪ 1 

 

𝜀(𝑛) =
1

2

(𝑑𝑆 − 𝑑𝑠)(𝑑𝑆 + 𝑑𝑠)

(𝑑𝑠)2
≅

1

2

(𝑑𝑆 − 𝑑𝑠)(2𝑑𝑠)

(𝑑𝑠)2
=

(𝑑𝑆 − 𝑑𝑠)

𝑑𝑠
 

 

That is, the extensional strain may be interpreted as change in length divided by original 

length, which is the usual engineering definition of extensional strain.  The diagonal 

terms on the linear strain tensor therefore represent the relative elongation of line 

elements in the coordinate directions. 

 

2) Shear strain  

 

𝜀(𝑛𝑚) ≡
1

2
(1 + 2𝜀(𝑛))

1
2⁄

(1 + 2𝜀(𝑚))
1

2⁄
𝑐𝑜𝑠𝛷 −

1

2
 𝑐𝑜𝑠𝜑 = 𝜀𝑖𝑗𝑛𝑖𝑚𝑗 ≪ 1 

 

𝜀(𝑛𝑚) ≅
1

2
(1)(1)𝑐𝑜𝑠𝛷 −

1

2
 𝑐𝑜𝑠𝜑 =

1

2
(𝑐𝑜𝑠𝛷 − 𝑐𝑜𝑠𝜑) 

 

Consider the case when n is perpendicular to m; then φ = π/2 and cosφ = 0.  

Let Δφ = φ – Φ = π/2 – Φ; then 

 

𝜀(𝑛𝑚) ≅
1

2
cos (

𝜋

2
− ∆𝜑) =

1

2
sin ∆𝜑 ≅

1

2
∆𝜑 

 

So that   𝜀(𝑛𝑚) ≅
1

2
∆𝜑   for n ┴ m 

 

That is, when n is perpendicular to m, ε(nm) is ½ the change in angle between these 

initially perpendicular lines.  The off-diagonal components of the strain tensor therefore 

represent ½ the change in angle between line elements in coordinate directions. 

 

D. Rotations 

 

For small displacement gradients, the rotation tensor can be approximated: 

 

ω𝑖𝑗
𝐿 =

1

2
(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖 − 𝑢𝑘,𝑖𝑢𝑘,𝑗) ≅

1

2
(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖) ≪ 1 

 

The infinitesimal rotation vector is therefore defined as  

 

𝜔𝑖𝑗 ≡
1

2
(𝑢𝑖,𝑗 − 𝑢𝑗,𝑖) 

 

Note that this is an anti-symmetric tensor: diagonal components are zero, and there are 

only three independent components.  

 



Therefore, we can define an associated vector, , such that 

 

𝜔𝑖𝑗 = −𝜀𝑖𝑗𝑘𝜔𝑘 

 

This equation can be inverted by multiplying both sides by εijl : 

 

𝜔𝑖𝑗𝜀𝑖𝑗𝑙=−𝜀𝑖𝑗𝑘𝜀𝑖𝑗𝑙𝜔𝑘 = −2𝛿𝑘𝑙𝜔𝑘 = −2𝜔𝑙 

so that 

 

𝜔𝑙 = −
1

2
𝜀𝑖𝑗𝑙𝜔𝑖𝑗 

or, specifically, 

 

𝜔1 = 𝜔32 =
1

2
(𝑢3,2 − 𝑢2,3) 

𝜔2 = 𝜔13 =
1

2
(𝑢1,3 − 𝑢3,1) 

𝜔3 = 𝜔21 =
1

2
(𝑢2,1 − 𝑢1,2) 

 

 is referred to as the infinitesimal rotation vector. 

 

Recall, for a general rigid displacement, 

 

𝑢𝑖 = 𝐶𝑖 + (∝𝑗𝑖− 𝛿𝑗𝑖)𝑥𝑗 = 𝐶𝑖 + 𝜔𝑖𝑗
𝐿 𝑥𝑗 

 

Now, for an infinitesimal rotation,  

 

𝜔𝑖𝑗
𝐿 ≅ 𝜔𝑖𝑗 = −𝜀𝑖𝑗𝑘𝜔𝑘 

so that             𝑢𝑖 = 𝐶𝑖 − 𝜀𝑖𝑗𝑘𝑥𝑗𝜔𝑘 = 𝐶𝑖 + 𝜀𝑖𝑗𝑘𝜔𝑘𝑥𝑗 

 

Or, in general vector notation  u = C + Gr 

 

E. Based on the above discussions, “small displacement gradients” has the physical 

interpretation of small deformations (strain) and small rotations.  Only when both strains 

and rotations are small are we justified in using the linearized kinematic relations. 


