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Introduction
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• Distribution of normal and shearing 
stresses satisfies

• Transverse loading applied to a beam 
results in normal and shearing stresses in 
transverse sections.
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• Longitudinal shearing stresses must exist 
in any member subjected to transverse 
loading.

• When shearing stresses are exerted on the 
vertical faces of an element, equal stresses 
must be exerted on the horizontal faces
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Shear on the Longitudinal Surface of a Beam 
Element

• Consider prismatic beam

• For equilibrium of beam element
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• Note,
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• Substituting,
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Shear on the Longitudinal Surface of a Beam 
Element

• where
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• Shear flow,
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Example 6.01

SOLUTION:

• Determine the horizontal force per 
unit length or shear flow q on the 
lower surface of the upper plank.

• Calculate the corresponding shear 
force in each nail.
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A beam is made of three planks, 
nailed together.  Knowing that the 
spacing between nails is 25 mm and 
that the vertical shear in the beam is 
V = 500 N, determine the shear force 
in each nail.

force in each nail.
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Example 6.01

= yAQ

SOLUTION:

• Determine the horizontal force per 
unit length or shear flow q on the 
lower surface of the upper plank.
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• Calculate the corresponding shear 
force in each nail for a nail spacing of 
25 mm.

mNqF 3704)(m025.0()m025.0( ==
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Determination of the Shearing Stress in a Beam

• The averageshearing stress on the 
longitudinal surface of the element is obtained 
by dividing the shearing force on the element 
by the area of the face.
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• If the width of the beam is comparable or large 
relative to its depth, the shearing stresses at D1

and D2 are significantly higher than at D.

• On the upper and lower surfaces of the beam, 
τyx= 0.  It follows that τxy= 0 on the upper and 
lower edges of the cross-sections.
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Shearing Stresses τxy in Common Types of Beams

• For a narrow rectangular beam,
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• For American Standard (S-beam) 
and wide-flange (W-beam) beams
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Sample Problem 6.2

SOLUTION:

• Develop shear and bending moment 
diagrams.  Identify the maximums.

• Determine the beam depth based on 
allowable normal stress.
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A timber beam is to support the three 
concentrated loads shown.  Knowing 
that for the grade of timber used,

psi120psi1800 == allall τσ

determine the minimum required depth 
d of the beam.

allowable normal stress.

• Determine the beam depth based on 
allowable shear stress.

• Required beam depth is equal to the 
larger of the two depths found.
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Sample Problem 6.2

SOLUTION:

Develop shear and bending moment 
diagrams.  Identify the maximums.
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Sample Problem 6.2

31 dbI =

• Determine the beam depth based on allowable 
normal stress.
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• Determine the beam depth based on allowable 
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shear stress.
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• Required beam depth is equal to the larger of the two.
in.71.10=d
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Longitudinal Shear on a Beam Element 
of Arbitrary Shape

• We have examined the distribution of 
the vertical components τxy on a 
transverse section of a beam.  We now 
wish to consider the horizontal 
components τxz of the stresses.

• Consider prismatic beam with an 
element defined by the curved surface 
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• Except for the differences in 
integration areas, this is the same 
result obtained before which led to
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CDD’C’.
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Example 6.04

SOLUTION:

• Determine the shear force per unit 
length along each edge of the upper 
plank.

• Based on the spacing between nails, 
determine the shear force in each 
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A square box beam is constructed from 
four planks as shown.  Knowing that the 
spacing between nails is 1.5 in. and the 
beam is subjected to a vertical shear of 
magnitude V = 600 lb, determine the 
shearing force in each nail.

determine the shear force in each 
nail.
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Example 6.04

SOLUTION:

• Determine the shear force per unit 
length along each edge of the upper 
plank.
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lengthunit per  force edge 
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lb
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• Based on the spacing between nails, 
determine the shear force in each 
nail.
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For the upper plank,
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Shearing Stresses in Thin-Walled Members

• Consider a segment of a wide-flange 
beam subjected to the vertical shear V.

• The longitudinal shear force on the 
element is

x
I

VQ
H ∆=∆

• The corresponding shear stress is
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• NOTE: 0≈xyτ
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in the flanges
in the web

• Previously found a similar expression 
for the shearing stress in the web
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Shearing Stresses in Thin-Walled Members

• The variation of shear flow across the 
section depends only on the variation of 
the first moment.

I

VQ
tq == τ

• For a box beam, q grows smoothly from 
zero at A to a maximum at C and C’ and 
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zero at A to a maximum at C and C’ and 
then decreases back to zero at E.

• The sense of q in the horizontal portions 
of the section may be deduced from the 
sense in the vertical portions or the 
sense of the shear V.
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Shearing Stresses in Thin-Walled Members

• For a wide-flange beam, the shear flow 
increases symmetrically from zero at A
and A’, reaches a maximum at C and 
then decreases to zero at E and E’. 

• The continuity of the variation in q and 
the merging of q from section branches 

© 2012 The McGraw-Hill Companies, Inc. All rights reserved. 3- 17

the merging of q from section branches 
suggests an analogy to fluid flow.
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Plastic Deformations

moment elastic maximum == YY c

I
M σ• Recall:

• For  M = PL < MY , the normal stress does 
not exceed the yield stress anywhere along 
the beam.

• For PL > MY , yield is initiated at B and B’.  
For an elastoplastic material, the half-thickness 
of the elastic core is found from
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• Maximum load which the beam can support is

L

M
P p=max

of the elastic core is found from
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• The section becomes fully plastic (yY = 0) at 
the wall when

pY MMPL ==
2
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Plastic Deformations

• Consider horizontal shear force on an 
element within the plastic zone,

( ) ( ) 0=−−=−−=∆ dAdAH YYDC σσσσ

Therefore, the shear stress is zero in the 
plastic zone.

• Preceding discussion was based on 
normal stresses only
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plastic zone.

• As A’ decreases, τmax increases and 
may exceed τY

• Shear load is carried by the elastic core,
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Sample Problem 6.3

SOLUTION:

• For the shaded area,
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• The shear stress at a,
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Knowing that the vertical shear is 50 
kips in a W10x68 rolled-steel beam, 
determine the horizontal shearing 
stress in the top flange at the point a.

• The shear stress at a,
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