Sixth Edition

CHAPTER

6

MECHANICS OF MATERIALS

Ferdinand P. BeerE. Russell Johnston, Jr.John T. DeWolf

Lecture Notes:J. Walt OlerTexas Tech University

Shearing Stresses in Beams and Thin Walled Members**David F. Mazurek**

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Edition Introduction

σ.

- Transverse loading applied to a beam results in normal and shearing stresses in transverse sections.
- • Distribution of normal and shearing stresses satisfies

$$
F_x = \int \sigma_x dA = 0 \qquad M_x = \int (y \tau_{xz} - z \tau_{xy}) dA = 0
$$

\n
$$
F_y = \int \tau_{xy} dA = -V \qquad M_y = \int z \sigma_x dA = 0
$$

\n
$$
F_z = \int \tau_{xz} dA = 0 \qquad M_z = \int (-y \sigma_x) = M
$$

- When shearing stresses are exerted on the vertical faces of an element, equal stresses must be exerted on the horizontal faces
- Longitudinal shearing stresses must exist in any member subjected to transverse loading.

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Shear on the Longitudinal Surface of a Beam

Element

- Consider prismatic beam
- For equilibrium of beam element

 $\sum F_x = 0 = \Delta H + \int (\sigma_D - \sigma_C)$ ∫ $\Delta H = \frac{M_{D}}{D}$ = '*a*==∆+ ' 0 *aD C* $\mathbf{y}_x - \mathbf{0} - \mathbf{\Delta} \mathbf{H}$ **J** $(\mathbf{v}_D \quad \mathbf{v}_C)$ \int *y dA MM* $H = \frac{v - v}{r}$ *FH*σ σ_c)dA

• Note,

$$
Q = \int_{a'} y \, dA
$$

$$
M_D - M_C = \frac{dM}{dx} \Delta x = V \Delta x
$$

shear flowIVQx j H $q = \frac{\ }{}$ = $\frac{\ }{}$ = $\frac{\ }{}$ = *x IVQ* $\Delta H = \frac{1}{\alpha} \Delta$ ∆∆ =• Substituting,

© 2012 The McGraw-Hill Companies, Inc. All rights reserved. **3- ³**

End

Graw

Edition

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Shear on the Longitudinal Surface of a Beam Element

 η

 $-N.A.$

 y_1

• Shear flow,

$$
q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I} = shear \, flow
$$

• where

$$
Q = \int_{a'} y dA
$$

= firstmoment of area above y_1

$$
I = \int_A y^2 dA
$$

= secondmoment of full crosssection

$$
q' = \frac{\Delta H'}{\Delta x} = \frac{VQ'}{I}
$$

$$
Q + Q' = 0
$$

$$
+Q'=0
$$

=first moment with respect

to neutral axis

$$
\Delta H' = -\Delta H
$$

 \mathfrak{X}

 $-\Delta x$

 D'

 D''

 \mathcal{C}

 C''

 y_1

End

Edition

A beam is made of three planks, nailed together. Knowing that the spacing between nails is 25 mm and that the vertical shear in the beam is $V = 500$ N, determine the shear force in each nail.

SOLUTION:

- Determine the horizontal force per unit length or shear flow *q* on the lower surface of the upper plank.
- Calculate the corresponding shear force in each nail.

Q=*Ay* $= (0.020 \,\mathrm{m} \times 0.100 \,\mathrm{m})(0.060 \,\mathrm{m})$ $(0.020\,\text{m})(0.100\,\text{m})^3$ $(0.100\,\text{m})(0.020\,\text{m})^3$ $(0.020\,{\rm m}\!\times\!0.100\,{\rm m})(0.060\,{\rm m})^2$] 64 $=16.20\times 10^{-6}$ m $+(0.020\,\text{m} \times 0.100\,\text{m})(0.060\,\text{m})^2$ $12^{(0.100 \text{ m})(0.020 \text{ m})}$ 1 $+2[\frac{1}{12}(0.100\,\text{m})(0.020\,\text{m})]$ $12^{(0.626 \text{ m})(0.100 \text{ m})}$ 1 $\frac{1}{12}$ (0.020 m)(0.100 m 63 $=120\times 10^{-6}$ m =*I*

SOLUTION:

• Determine the horizontal force per unit length or shear flow *q* on the lower surface of the upper plank.

$$
q = \frac{VQ}{I} = \frac{(500 \text{N})(120 \times 10^{-6} \text{m}^3)}{16.20 \times 10^{-6} \text{m}^4}
$$

$$
= 3704 \frac{\text{N}}{\text{m}}
$$

• Calculate the corresponding shear force in each nail for a nail spacing of 25 mm.

$$
F = (0.025 \,\mathrm{m})q = (0.025 \,\mathrm{m})(3704 \,\mathrm{N/m})
$$

F $= 92.6 N$

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Edition Determination of the Shearing Stress in a Beam

End

 \bullet The *average* shearing stress on the longitudinal surface of the element is obtained by dividing the shearing force on the element by the area of the face.

$$
\tau_{ave} = \frac{\Delta H}{\Delta A} = \frac{q \Delta x}{\Delta A} = \frac{VQ}{I} \frac{\Delta x}{t \Delta x}
$$

$$
= \frac{VQ}{It}
$$

- On the upper and lower surfaces of the beam, τ_{yx} = 0. It follows that τ_{xy} = 0 on the upper and lower edges of the cross-sections.
- If the width of the beam is comparable or large relative to its depth, the shearing stresses at $D_1^{}$ and D_2 are significantly higher than at D .

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Edition Shearing Stresses τ *xy* in Common Types of Beams

• For a narrow rectangular beam,

$$
\tau_{xy} = \frac{VQ}{Ib} = \frac{3V}{2A} \left(1 - \frac{y^2}{c^2} \right)
$$

$$
\tau_{\text{max}} = \frac{3V}{2A}
$$

• For American Standard (S-beam) and wide-flange (W-beam) beams

$$
\tau_{ave} = \frac{VQ}{It}
$$

$$
\tau_{max} \approx \frac{V}{A_{web}}
$$

Graw

A timber beam is to support the three concentrated loads shown. Knowing that for the grade of timber used,

 $\sigma_{all} = 1800 \,\text{psi} \qquad \tau_{all} = 120 \,\text{psi}$

determine the minimum required depth *d* of the beam.

SOLUTION:

- Develop shear and bending moment diagrams. Identify the maximums.
- Determine the beam depth based on allowable normal stress.
- Determine the beam depth based on allowable shear stress.
- Required beam depth is equal to the larger of the two depths found.

 \triangle

End

Mc
Graw
Hill

SOLUTION:

Develop shear and bending moment diagrams. Identify the maximums.

> $_{\text{max}} = 7.5 \text{kip} \cdot \text{ft} = 90 \text{kip} \cdot \text{in}$ $V_{\text{max}}=3\text{kips}$ $M_{\text{max}} = 7.5 \,\text{kip} \cdot \text{ft} = 90 \,\text{kip} \cdot$

End

• Determine the beam depth based on allowable normal stress.

$$
\sigma_{all} = \frac{M_{\text{max}}}{S}
$$

1800 psi = $\frac{90 \times 10^3 \text{ lb} \cdot \text{in.}}{(0.5833 \text{ in.})d^2}$
d = 9.26 in

 $d = 9.26$ in.

• Determine the beam depth based on allowable shear stress.

$$
\tau_{all} = \frac{3}{2} \frac{V_{\text{max}}}{A}
$$

120 psi = $\frac{3}{2} \frac{3000 \text{ lb}}{(3.5 \text{ in.})d}$
 $d = 10.71 \text{ in.}$

• Required beam depth is equal to the larger of the two. $d = 10.71$ in.

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Longitudinal Shear on a Beam Element

of Arbitrary Shape

Edition

- We have examined the distribution of the vertical components τ , τ_{xy} on a transverse section of a beam. We now wish to consider the horizontal components $\tau_{\rm s}$ τ_{xz} of the stresses.
- Consider prismatic beam with an element defined by the curved surface CDD'C'.

$$
\sum F_x = 0 = \Delta H + \int_a (\sigma_D - \sigma_C) dA
$$

• Except for the differences in integration areas, this is the same result obtained before which led to

$$
\Delta H = \frac{VQ}{I} \Delta x \qquad q = \frac{\Delta H}{\Delta x} = \frac{VQ}{I}
$$

SOLUTION:

- Determine the shear force per unit length along each edge of the upper plank.
- Based on the spacing between nails, determine the shear force in each nail.

A square box beam is constructed from four planks as shown. Knowing that the spacing between nails is 1.5 in. and the beam is subjected to a vertical shear of magnitude $V = 600$ lb, determine the shearing force in each nail.

For the upper plank, $Q = A'y = (0.75$ in.) $(3$ in.) $(1.875$ in.) $=4.22$ in³

For the overall beam cross-section, $(4.5\text{in})^4 - \frac{1}{12}(3\text{in})^4$ $= 27.42 \text{ in}^4$ $12^{(2)}$ $\frac{1}{12}(4.5\text{in})^4 - \frac{1}{12}$ 1 $I = \frac{1}{12} (4.5 \text{in})^4 - \frac{1}{12} (3 \text{in})$

SOLUTION:

• Determine the shear force per unit length along each edge of the upper plank.

$$
q = \frac{VQ}{I} = \frac{(600 \text{ lb})(4.22 \text{ in}^3)}{27.42 \text{ in}^4} = 92.3 \frac{\text{lb}}{\text{in}}
$$

$$
f = \frac{q}{2} = 46.15 \frac{\text{lb}}{\text{in}}
$$

= edge force per unit length

• Based on the spacing between nails, determine the shear force in each nail.

$$
F = f \ell = \left(46.15 \frac{\text{lb}}{\text{in}}\right) (1.75 \text{in})
$$

$$
F = 80.81b
$$

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Edition Shearing Stresses in Thin-Walled Members

- Consider a segment of a wide-flange beam subjected to the vertical shear *V*.
- The longitudinal shear force on the element is

$$
\Delta H = \frac{VQ}{I} \Delta x
$$

- The corresponding shear stress is*ItVQt <i>x l H* $z_x = i_{xz} \approx \frac{1}{t \Delta x}$ Δx ∆ $\tau_{\tau r} = \tau_{\tau r} \approx -$ = τ ≈
- Previously found a similar expression for the shearing stress in the web

$$
\tau_{xy} = \frac{VQ}{It}
$$

• NOTE: $\tau_{xy} \approx 0$ in the flanges $\tau_{xz} \approx 0$ in the web

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Edition Shearing Stresses in Thin-Walled Members

• The variation of shear flow across the section depends only on the variation of the first moment.

$$
q = \tau t = \frac{VQ}{I}
$$

- For a box beam, *q* grows smoothly from zero at A to a maximum at *C* and *C'* and then decreases back to zero at *E*.
- The sense of *q* in the horizontal portions of the section may be deduced from the sense in the vertical portions or the sense of the shear *V*.

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Edition Shearing Stresses in Thin-Walled Members

End

- For a wide-flange beam, the shear flow increases symmetrically from zero at *A*and *A'*, reaches a maximum at *C* and then decreases to zero at *E* and *E'*.
- The continuity of the variation in *q* and the merging of *q* from section branches suggests an analogy to fluid flow.

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Edition Plastic Deformations

- $\gamma = -\frac{1}{c}\sigma_Y = \text{maximum elastic moment}$ *cI*• Recall: $M_Y = -\sigma$
- For $M = PL < M_y$, the normal stress does not exceed the yield stress anywhere along the beam.
- For $PL > M_Y$, yield is initiated at *B* and *B'*. For an elastoplastic material, the half-thickness of the elastic core is found from

$$
Px = \frac{3}{2}M_Y \left(1 - \frac{1}{3}\frac{y_Y^2}{c^2}\right)
$$

• The section becomes fully plastic $(y_y = 0)$ at the wall when

$$
PL = \frac{3}{2} M_Y = M_p
$$

• Maximum load which the beam can support is *LM* $P_{\text{max}}=\frac{P}{I}$

© 2012 The McGraw-Hill Companies, Inc. All rights reserved. **3- ¹⁸**

MECHANICS OF MATERIALSSixthBeer • Johnston • DeWolf • Mazurek Edition Plastic Deformations

 η **PLASTIC** E τ_{xy} $2y_Y$ **ELASTIC** $\tau_{\rm max}$ E' C' **PLASTIC**

- Preceding discussion was based on normal stresses only
- Consider horizontal shear force on an element within the plastic zone,

$$
\Delta H = -(\sigma_C - \sigma_D)dA = -(\sigma_Y - \sigma_Y)dA = 0
$$

Therefore, the shear stress is zero in the plastic zone.

- Shear load is carried by the elastic core, *AP* $\equiv \frac{\ }{\alpha \rightarrow \prime}$ $A' = 2by$ *y* $\frac{P}{A'}$ 1 – $\frac{y}{y}$ *P* $\frac{1}{\sqrt{2}}$ $1 - \frac{1}{2}$ where $A - 20y$ *Yxy* 2where $A' =$ | l $\bigg)$ l l \setminus $\Big($ ₁ $\Big)$ $=\frac{1}{2}$ $\frac{1}{4'}$ 3 $\tau_{\text{max}} =$ $1-\frac{y}{2}$ where $A'=2$ $2 A' \frac{1}{2}$ 3 $\gamma \left| \right|^{1}$ 2 2 $\tau_{\rm w} = \frac{2}{\tau} = \frac{1}{2} = \frac{1}{2}$
- As *A*' decreases, τ_{max} increases and may exceed $\tau_{\text{\tiny{Y}}}$

SOLUTION:

- For the shaded area, $Q = (4.31 \text{in}) (0.770 \text{in}) (4.815 \text{in})$ $=15.98$ in³
- \bullet The shear stress at *a*,

$$
\tau = \frac{VQ}{It} = \frac{(50 \text{kips})(15.98 \text{in}^3)}{(394 \text{in}^4)(0.770 \text{in})}
$$

 $\tau=2.63$ ksi

Knowing that the vertical shear is 50 kips in a W10x68 rolled-steel beam, determine the horizontal shearing stress in the top flange at the point *a*.