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Pure Bending

Pure Bending:
Prismatic members
subjected to equal
and opposite
couples acting in
the same
longitudinal plane
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EC HANICS OF MATERIALS Beer « Johnston « DeWolf « Mazurek
Other Loading Type

‘475 iﬂ_‘;‘

» Eccentric Loading: Axial loading which
does not pass through section centroid
produces internal forces equivalent to an
axial force and a couple

» Transverse Loading: Concentrated or
distributed transverse load produ
internal forces equivalent to a shear
force and a couple

» Principle of Superposition: The normal
stress due to pure bending may be
combined with the normal stress due to
axial loading and shear stress due to
shear loading to find the complete state
of stress.
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Symmetric Member in Pure Bending

 Internal forces in any cross section are equivalen
to a couple. The moment of the couple is the
sectionbending moment.

« From statics, a couple M consists of equal and
opposite forces.

 The sum of the components of the forces in any
direction is zero.

« The moment is the same about any axis
perpendicular to the plane of the couple and
zero about any axis contained in the plane.

* These requirements may be applied to the sums
of the components and moments of the statically
indeterminate elementary internal forces.

Fy=Jo,dA=0
My =[zo, dA=0
M, =[-yo, dA=M
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Bending Deformations

)

o Beam with a plane of symmetry in pure
bending:

 member remains symmetric

* bends uniformly to form a circular arc

» cross-sectional plane passes through arc center
and remains planar

R et * length of top decreases and length of bottom
- Increases
M’
. » aneutral surface must exist that is parallel to the
EmEEEEEE e - upper and lower surfaces and for which the length

P does not change

M

(]J)L()I]“’itll(]iHHI.:i]OI'EV.OHtLII section * Stresses and Stralns are negatlve (CompreSSIve)
above the neutral plane and positive (tension)
below it
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ECHANICS OF MATERIALS  eer - Jonnston - bewolr + Mazurek
Strain Due to Bending

Consider a beam segment of length

After deformation, the length of the neutral
surface remaink. At other sections,

(a) Longitudinal, vertical section (b) Transverse section
(plane of symmetry)

y is measured from the neutral surface

p is radius of curvature of neutral surface

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.



ECHANICS OF MATERIALS e - omson - osvor-

Stress Due to Bending
i
* For a linearly elastic material,

g, = ng = _El ‘__ &
P
(stressrariedinearly) oo — o,

 For static equilibrium, . o
» For static equilibrium,

F,=0=[o, dA=[-EYdA y
P M =[(~yo, dA)zj(—y)(—E—jdA
Oz—EIydA P
P M:E 2d,A\: EIZ
P P

First moment with respect to neutral 1 M
plane is zero. Therefore, the neutral p E,
surface must pass through the Substitutiginto o, =—E-Y
section centroid. P

=W
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Symmetry of Cross-Section

« For static equilibrium,

0= (20, )= -

z

O:TA—ZIysz

* The integral is zero if the cross-section is syitnime
about either the- or z-axis

 The flexure formula:

is limited to: |,
* Linear elastic material

* Bending about an axis of symmetry of the cross-
sectionor about an axis perpendicular to an axis

of symmetry
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c
— | |
(a) S-beam (b) W-beam

ECHAN|CS OF MATER|A|_S Beer « Johnston » DeWolf « Mazurek
Beam Section Properties

 The maximum normal stress due to bending,

g =Mc_M
mor s

| =sectionmomenf inertia

I .
S = — = sectionmodulus
C

A beam section with a larger section modulus
will have a lower maximum stress

» Consider a rectangular beam cross section,

1 K3
S:I_:ﬂ:lbhszlAh

Between two beams with the same cross
sectional area, the beam with the greater depth
will be more effective in resisting bending.

» Structural steel beams are designed to have a
large section modulus.
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Properties of American Standard Shapes

755
Appendix C. Properties of Rolled-Steel Shapes
(SI Units)
S Shapes
(American Standard Shapes)
Flange
Web Axis X-X Axis Y-Y
Thick- | Thick-
Area Depth | Width ness ness I, Y ry 1, y r,
Designationt Amm?> dmm| bymm t,mm | t,mm | 1°mm* 10°mm? mm [10°mm* 10°mm® mm
S610 X 180 22900 622 204 27.7 20.3 1320 4240 240 |34.9 341 39.0
158 20100 622 200 24.7 15.7 1230 3950 247 | 325 321 39.9
149 19000 610 184 22.1 18.9 995 3260 229 |20.2 215 32.3
134 17100 610 181 22.1 159 938 3080 234 19.0 206 33.0
119 15200 610 178 22.1 12.7 878 2880 240 17.9 198 34.0
S$510 X 143 18200 516 183 234 203 700 2710 196 1213 228 339
128 16400 516 179 234 16.8 658 2550 200 19.7 216 344
112 14200 508 162 202 16.1 530 2090 193 12.6 152 29.5
98.3 12500 508 159 202 12.8 495 1950 199 11.8 145 304
S460 X 104 13300 457 159 17.6 18.1 385 1685 170 10.4 27 27.5
81.4 10400 457 152 17.6 11.7 333 1460 179 8.83 113 28.8
S380 X 74 9500 381 143 1006 14.0 201 1060 145 6.65 90.8 26.1
64 8150 381 140 158 10.4 185 971 151 6.15 85.7 21

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.



Sample Problem 4.2

[«—— 90 mm —)—|

20 mm

40 mm

!

30 mm

A cast-iron machine part is acted upon
by a 3 kN-m couple. Knowing = 165
GPa and neglecting the effects of
fillets, determine (a) the maximum
tensile and compressive stresses, (b)
the radius of curvature.

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.
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SOLUTION:

» Based on the cross section geometry,
calculate the location of the section
centroid and moment of inertia.

v _ 2YA _<|r 2
Y=2"  |,=3(l+Ad
N ie=x(iead?)
* Apply the elastic flexural formula to

find the maximum tensile ar
compressive stresses.

_ M

Om |

e Calculate the curvature
i_M
p El



ECHAN'CS OF MATERIALS Beer « Johnston * DeWolf « Mazurek
Sample Problem 4.2

SOLUTION:
~— 90 mm ——
Based on the cross section geometry, calculate
f '] _¢*™n the location of the section centroid and
fy = Smm . ~ moment of inertia.
mm — |—e H Y
' // £ x Area,mm? | y, mm yA, mm®>
2= 20 = 1| 20x90=1800 50 90x10°
o 2| 40x30=1200| 20 24x10°
> A=3000 Y yA=114x10°
12 mm } e 1| [22mmr _2VA_ 114x10° =38mm
o o= L__x» YA 3000
18 mm

Y =38 mm IX,:Z(I_+Ad2):Z(1—12bh3+Ad2)
' = (1.90%20° +1800x12° ) + (1 30x 40° +1200x18)

12

| =86Ex10°mm* =86Ex10°m”*

o
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ECHAN'CS OF MATERIALS Beer « Johnston * DeWolf « Mazurek
Sample Problem 4.2

* Apply the elastic flexural formula to find the

A maximum tensile and compressive stresses.
LR Fea=0022m Mc
o v O = ——
C ¢p = 0.038 m M
On= B -9 4 A :
| 868%x10 “m
M Cg _ 3kN [nx0.038m Oo = -131.3MPz
98 =" T 9, 4 B '
| 86&x1C “m

/ Center of curvature

e Calculate the curvature

1i_M
p El

3kN [ E
(165GP4g68x10°m?) P
0
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nb

Oy = N0y

ECHANICS OF MATERIALS
Bending of Members Made of Several Materials

Beer ¢ Johnston e

DeWolf ¢ Mazurek

« Consider a composite beam formed from

two materials witle, andE,.

Normal strain varies linearly.

0
Piecewise linear normal stress variation.
E E
o1 = E1&y :_ﬂ 0y = Epey = - 2y
Yo,

Neutral axis does not pass through
section centroid of composite section.

Elemental forces on the section are

dF; = oydA = —E—;y dA dF, = o,dA= —%dA

Define a transformed section such that

dF, = ——(nEl)ydA = —E(n dA) n= Ex
P P E



EC HANICS OF MATERIALS Beer « Johnston « DeWolf « Mazurek
Example 4.03

—_. SOLUTION:
0.4 in. i 0.4 in. _
* Transform the bar to an equivalent cross
section made entirely of brass
» Evaluate the cross sectional properties of
3in, the transformed section
|
|  Calculate the maximum stress in-
1N i transformed section. This is the correct
[ steel | maximum stress for the brass pieces of
Brass Brass the bar.
Bar is made from bonded pieces of
steel E,= 29x10 psi) and brass e Determine the maximum stress in the
(E, = 15x10 psi). Determine the steel portion of the bar by multiplying
maximum stress in the steel and the maximum stress for the transformed
brass when a moment of 40 kip*in section by the ratio of the moduli of
IS applied. elasticity.

E"" © 2012 The McGraw-Hill Companies, Inc. All rights reserved.



0.75 in.

3in.

|

/7 Steel \

Brass Brass

()41‘11.-»‘ |~—>‘ ’4—().4in‘

04 in.-“ - 1.45in. —>‘ ’-‘- 0.4 in.

31in.

L ——=%

[
I
|
|
|
|
|
|
|
|
|
|
53

~— 2.251n. —>|

All brass

EC HANICS OF MATERIALS Beer « Johnston « DeWolf « Mazurek
Example 4.03

SOLUTION:

* Transform the bar to an equivalent cross section
made entirely of brass.

_Es _ 29x10°psi

E, 15x10Ppsi
br = 04in +1.933x 0.75in + 04in = 225in

=1.933

» Evaluate the transformed cross sectional progertie
_ 3_ . \(2in )3
=Lbrh® =1(225in.)(3in.)
=5.06in.*

» Calculate the maximum stresses

_ Mc _ (4Ckip[in.)(1.5in.)
5.06%in.*

=11.85Kksi

m
|

(Tb)max = Tm (O )iy =11.85ksi
(Os)nay = NOm =1.933x1185ksi  |(T) 1 = 22.9Ksi

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.
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Stress Concentrations

3.0 i
s I o) W W
BRI ) NN ()
\\\\\ D_: \\\\((11.5 A2
2.4 N\ —5=3 5 \
AN AERN\W
K 20 \§ Y\&\J-ﬁ - K 2.0 \‘\ET/\&M’H}S
1.8 -\\ \\\§ 1.1 L& \\\\%\
- \ \ NN 16 a e N, N
IRNNURRSS=SuY ———
1.2 \\:ﬁ [ L4
-, 10 _ | ‘ ‘
. - ‘ 0 0.05 0.10 0.15 0.20 0.25 0.30
0 005 010 015 020 025 03 o
r/d
Stress concentrations may occur: o =k Mc
m

* in the vicinity of points where the
loads are applied

* in the vicinity of abrupt changes
INn Cross section
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EC HANICS OF MATERIALS Beer « Johnston « DeWolf « Mazurek

Members Made of an Elastoplastic Material

y * Rectangular beam made of an elastoplastic material

¢ < _ Mc
Ox=0y Om*= 1

=i

ELASTIC ——

N 5 I . .
=" Om =0y My =—-0y = maximumelasticmoment
_‘;,‘ a = & 5 3 C
(b) M =My  If the moment is increased beyond the maximum
PLASTIC 7 ) elastic moment, plastic zones develop around an
T - elastic core.
ELASTIC — = 3 1 y$
M =SMy 1—:—3? Yy =elasticcorehalf - thickness
PLASTIC - (r““:,: =0y
(c) M>M,, .. -
g * In the limit as the moment is increased furthee, t
. J— elastic core thickness goes to zero, corresporidiag
; fully plastic deformation.
PLASTIC = M =3My = plasticmoment
= By M D :
ezt k = —= =shapdactor (depend®nly oncrosssectionshape)
)M =M,

My

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.



EC HANICS OF MATERIALS Beer ¢ Johnston ¢ DeWolf ¢ Mazurek
Plastic Deformations of Members With a

* Fully plastic deformation of a beam with only a
vertical plane of symmetry.

* The neutral axis cannot be assumed to pass

Neutral 40> SN . .
L\f S |\ through the section centroid.
{f‘f - « ResultantR, andR, of the elementar
(a) ’ compressive and tensile forces form a couple.
g =R
o J// 2 Aoy = R0y
o { I > The neutral axis divides the section into equal
L I )
~4 i B ~a » The plastic moment for the member,
\/ R, P
») Mp = (% Aoy Jd

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.
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Residual Stresses

» Plastic zones develop in a member made of an
elastoplastic material if the bending moment is
large enough.

« Since the linear relation between normal stresls an
strain applies at all points during the unloading
R Y phase, it may be handled by assuming the member
to be fully elastic

&/ . * Residual stresses are obtained by applying the

g principle of superposition to combine the stresses
/ due to loading with a momeM (elastoplastic
g deformation) and unloading with a momelsk
(elastic deformation).

* The final value of stress at a point will not, in
general, be zero.

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.
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Example 4.05, 4.06

A member of uniform rectangular cross section is
b=>50mm subjected to a bending moment M = 36.8 kN-m.
The member is made of an elastoplastic material
with a yield strength of 240 MPa and a modulus

———————— of elasticity of 200 GPa.

> = 60 m
i yy Determine (a) the thickness of the elastic cork, (b
the radius of curvature of the neutral surfa

“ After the loading has been reduced back to zero,
determine (c) the distribution of residual stresses

(d) radius of curvature.

¢ = 60 mm

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.
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Example 4.05, 4.06
b = 50 mm . .
 Thickness of elastic core;:
_3 _1 W
__________ M _EM [1 3 2}
¢ = 60 mm
Yy y2
_3 _1YY
36.8kN [ = 5(28.8kN mn)Ll 3 CZJ
i YW - W _
¢ = 60 mm = = (0.666 =
________ c 60mm 2yy =8Cmm
 Radius of curvature:
« Maximum elastic moment: o Oy _ 240x10° Pa
L Y7 E " 200x10°Pa
~=2pc® =2 (50><1o mX60><1O m)z _
C =12x10 3
=120x10%m? Y
- Y
My = oy =(120x109m? | 240MPa) .
c _ W _40x10 °m
=28.8kN [m P76 T 12x107 p =33.3m

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.
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Example 4.05, 4.06

y(m y(mm) y(mm)
7 éu 60 : - ;Y 6704 7i
A= + = §
540 N 240 o.(MPa) / 2()4|.5 3067 o, " W o (MPa)
—60 7; o .f‘f —60 /‘b_ﬁu
(@) (b) (c)
e M=36.8kMm e M=-36.8 KN-m e M=(
Yy =40mm o = Mc _ 36.8kN[m At theedge¢of theelasticcore
oy =240MPa "o 120x10°m? . 0y _~355x10°Pa
"7 =-1775x107°
; Yy _ 40x1073m
el €, [0 - - _6
‘// . Ex 1775x10
:;,),“"/ P =22tm
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ECHAN|CS OF MATER|A|_S Beer » Johnston « DeWolf + Mazurek
Eccentric Axial Loading in a Plane of Symmetry

» Stress due to eccentric loading found by
superposing the uniform stress due to a centric
load and linear stress distribution due a pure
bending moment

M
D X
: e ;—;5{_\ )
. é—"—‘ff“-jd 9% = (Ox)eentric* (9x)bending
A
(b)

_P_My
A

* Eccentric loadin  Validity requires stresses below proportional

F=P limit, deformations have negligible effect on
M = Pd geometry, and stresses not evaluated near points
of load application.
] Y Y
C : T, _I_ C T - C (4

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.



EC HANICS OF MATERIALS Beer « Johnston * DeWolf « Mazurek
Example 4.07

SOLUTION:

ra \  Find the equivalent centric load and
N

bending moment

I >{ < 05in.

| | « Superpose the uniform stress due to

j «lj [ the centric load and the linear stress
due to the bending moment.

\ e Evaluate the maximum tensile and
- compressive stresses at the inner
¥ 1601 and outer edges, respectively, of the
An open-link chain is obtained by superposed stress distribution.

bending low-carbon steel rods into the _ o
shape shown. For 160 Ib load, determm&Ind the neutral axis by determining
(a) maximum tensile and compressive the location where the normal stress
stresses, (b) distance between section 1S Z€l0.

centroid and neutral axis

E"" © 2012 The McGraw-Hill Companies, Inc. All rights reserved.



Example 4.07

ECHANICS OF MATERIALS

Beer ¢ Johnston ¢ DeWolf ¢ Mazurek

, e
d = 0.65 m.: AP  Normal stress due to a
| L | 815 e centric load
L [ *'/l | A= r? = 1{025in)?
: € TYYYRRYY
| 111 = 0.1963n?
i € Yy _P_ 160
Op=—~= 2
| A 0.1963n
‘ff =815psi
Y160 1b
. Equivaler!t centricload,,—~ . o, « Normal stress due to
and bending moment bending moment
I\/FI)-TDiICT@GOIb)(OGS' ) =i = a0z
=Pd = b5in T - 3.068x1073in*
=104lb [n C

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.

S M (104Ib [in)( 025in)
mo 3.068x10 3in?
= 8475psi

e

—84'75 psi



ECHAN |CS OF MATERIALS Beer « Johnston « DeWolf « Mazurek
Example 4.07

9290 psi o

\»%
S1! 3 AN @.
IYYYYYYY' A N.A
A ‘ I\
cY| Y c | y
| \y
]\ i 7660 psi
—8475 psi
(a) (b) (¢)

 Maximum tensile and compressive e« Neutral axis location

stresses o _P_My
=815+8475 o =926(ps| |

)3.068x10‘3in4

= .
=" —(815psi
Y0~ AM (815p 105lb [in

Oc=00"0m
= 81E-847E o, = —766(ps

Yo = 0.024Cin

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.



ECHANICS OF MATERIALS  eer - Jonnston - bewolr + Mazurek
Unsymmetric Bending

y y « Analysis of pure bending has been limited
- VA to members subjected to bending couples
xa o ¢ Ul _“ ‘T;"'f;._.\?t'\ acting in a plane of symmetry.
. . . .
= | o  Members remain symmetric and bend in
" @ the plane of symmetry.
NA. L[ F y = Y A N » The neutral axis of the cross section
Ca j' e T =& coincides with the axis of the couy
o) ‘?‘i;)  Will now consider situations in which the
; bending couples do not act in a plane of
| symmetry.
e s « Cannot assume that the member will bend
S in the plane of the couples.

* In general, the neutral axis of the section will
not coincide with the axis of the couple.

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.



Unsymmetric

EC HANICS OF MATERIALS Beer « Johnston « DeWolf « Mazurek

Bending

b Superposition is applied to determine stresses in

M’
g the most general case of unsymmetric bending.
| s, {’J'i-“ﬁ' * Resolve the couple vector into components along

PR

" the principle centroidal axes.

M, =M cosb My =Msin6

o Superpose the component stress distributions
:_sz+Myy
l, ly

Ox

« Along the neutral axis,
__Myy Myy_ (Mcosf)y_ (Msind)y

o, =0=
I /
tang=" = Ztan@ ;'_______‘u
z |y K
| e |
| 4 07

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.
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Example 4.08

S/ SOLUTION:

1600 1b - in. 302/
e * Resolve the couple vector into
! components along the principle
centroidal axes and calculate the
corresponding maximum stresses.

M, =M cos<b My =Msing

e Combine the stresses from f
1.5 in. component stress distributions.
oy = M.y + M y?

A 1600 Ib-in couple is applied to a I, ly
rectangular wooden beam in a plane
forming an angle of 30 deg. with the
vertical. Determine (a) the maximum vy
stress in the beam, (b) the angle that thet@n¢="_= |—Zta“‘9
neutral axis forms with the horizontal 4
plane.

» Determine the angle of the neutral
axis.

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.
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Example 4.08

* Resolve the couple vector into components anditzk
the corresponding maximum stresses.

y M, =(1600b [in)cos30=1386lbin

\ . M = (1600b [in)sin30=800Ib [ih
1600 1b -in. | \ | |, = 1—12(1.5in)(3.5in)3 = 5.350in?
Y. - I Iy =3(35in)(15in)” = 0.9844in
* M ¢ Thelargest tnsilestres due to M, occurtalon¢ AB
6 = 30° 1.75 in. '
. M,y _ (1386b [[h.)(14.75|n) - 4526ps
v 2 5.359in
A B
L_, Thelargest tesilestressiueto M , occursalongAD
0.75 in.
M,z i
_Myz _ (800l [[n)(_o.zsm) - 6095psi
ly 0.9844in
» The largest tensile stress due to the combinatiriga
occurs af.
Omay =01 +02 =452.6+60C.5 Omax = 1062psi

© 2012 The McGraw-Hill Companies, Inc. All rights reserved.
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Example 4.08

4
o\ i « Determine the angle of the neutral axis.

. iy
tang = 2 tang = 5.359|.n 4 tan30

qb//-\\‘ — l y 0.9844n

\ =3.142
@=T724°
A \ B
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