Syllabus for MAE 661
Laminated Composite Materials
Spring Semester 2008
Meeting Day: Wednesday
6:00 –9:00 pm
Room EGC 217

Instructor: Richard K. Kunz, Ph.D., P.E.
Associate Professor
Department of Mechanical and Industrial Engineering

Office: Suite 105F, School of Engineering
Phone: 478-301-4061
Email: kunz_rk@mercer.edu
Web Page: http://faculty.mercer.edu/kunz_rk

Textbook:
Required

References
• Introduction to Design and Analysis with Advanced Composite Materials, S. R. Swanson, Prentice-Hall, 1997

Catalog Description:
The structure and mechanical properties of composite laminates.

Course Objectives:
Introduce fundamental concepts in the analysis and design of laminated composite structures, with specific focus on:
• Classical lamination theory
• Considerations of stiffness and strength of composite structures
• Design considerations and applications
Provide the necessary background to apply the general principles of solid mechanics and structural analysis to laminated composite structures

Prerequisites:
EGR 252: Probability and Statistics for Engineers, or equivalent
MAE 320: Solid Mechanics II, or equivalent

Grading:
- Homework 20%
- Tests (2) 25% each
- Final Exam 30%

Course Standards:
1. **Homework** problems that are assigned in class are due at the start of the next class.

2. **Reading** assignments will be posted at each class meeting. You are expected to read the listed sections before the next class to prepare for the material to be covered.

3. **Tests:** There will be two 90-minute tests during the semester. Problems will be similar to the homework and problems worked in class. All tests will be closed notes and closed book. A calculator is recommended. No make-up tests will be given without a documented excuse.

4. **Final Exam:** There will be a comprehensive final exam. It will be closed notes and closed book. It will consist of problems similar to those on the tests.

5. The final exam will be given **Wednesday, 30 April, 6:00 – 9:00 pm**

Additional Information:
1. Please feel free to arrange a meeting with me at any point that you feel you need it. If you would like to see me, catch me after class to schedule a time, call, email, or stop by my office.

2. The **honor code** provisions as outlined in the Catalog and in the student handbook, The Lair, and on the web at http://www2.mercer.edu/HonorCouncil/default.htm apply to everyone and to all work handed in. By turning in a paper to the instructor, each student certifies that he/she has neither given nor received unauthorized aid in its completion. Plagiarism is a violation of the honor code and is prohibited. When in doubt, please ask to avoid potentially embarrassing situations.

3. Please turn off cell phones and pagers before entering the classroom.

4. Electronic communication is an important adjunct to face-to-face communication, including from professor to students, students to professor, and students to students. You must have regular access to your Mercer e-mail. If you do not have an active e-mail address on the first day of class, please secure one.

5. Students requiring accommodations for a disability should inform the instructor at the close of the first class meeting or as soon as possible. If you are not registered with Disability Services, the instructor will refer you to the Disability Support Services office for consultation regarding documentation of your disability and eligibility for accommodations.
under the ADA/504. In order to receive accommodations, eligible students must provide each instructor with a “Faculty Accommodation Form” from Disability Services. Students must return the completed and signed form to the Disability Services Coordinator on the 3rd floor of the Connell Student Center. Students with a documented disability who do not wish to use academic accommodations are also strongly encouraged to register with Disability Services and complete a Faculty Accommodation Form each semester. For further information, please contact Carole Burrowbridge, Disability Services Coordinator, at 301-2778 or visit the website at http://www.mercer.edu/stu_support/swd.htm

Tentative Course Coverage

Chapter

Introduction to Composite Materials ... 1
 Constituents
 Material forms
 Processing
 Applications
Macromechanical Behavior of a Lamina .. 2
 Orthotropic material properties
 Transformation of coordinates
 Lamina strength criteria
Micromechanical Behavior of a Lamina.. 3
 Simple models for stiffness and strength
Macromechanical Behavior of a Laminate ... 4
 Classical Lamination Theory
 Thermal effects
 Special laminates
 Laminate strength
Delamination, Matrix Cracking, and Durability ... 6
 Interlaminar stresses
 Edge effects
 Fatigue and fracture
Analysis of Laminated Beams .. 7
 Composite I beams
 Shear in composite beams
 Torsion of rods
Design Examples .. 7
 Sandwich structures
 Composite pressure vessels