Bode plots for 2$^{\text{nd}}$ Order systems
2nd Order Systems

- Everything applies, except the break point
- Magnitude and Phase with $s=j\omega$

\[
G(s) = C_0 \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}
\]

“Double” Breakpoint at ω_n
The asymptotic approaches described for real poles can be extended to systems with complex conjugate poles (and zeros).

\[G(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\zeta \omega_n \omega + \omega_n^2} = \frac{1}{1 + 2\zeta \left(\frac{\omega}{\omega_n} \right) + \left(\frac{j \omega}{\omega_n} \right)^2} \] (Normalized)

\[|G(j\cdot 0)| = 1 \]
\[\angle G(j\cdot 0) = 0^\circ \]
\[\lim_{\omega \to \infty} |G(j\omega)| = 0 \]
\[\lim_{\omega \to \infty} \angle G(j\cdot 0) = -180^\circ \]
Polar Representation

In polar terms:

\[|G(j\omega)| = \frac{1}{R_1R_2} \]
\[\angle G(j\omega) = -(\theta_1 + \theta_2) \]

\[\omega_n = \sqrt{x^2 + y^2} \]
\[\zeta = \cos\left(\frac{y}{\omega_n}\right) \]

Note: As \(R_1 \) is reduced in size, \(|G(j\omega)| \) increases. For \(\zeta < 1/\sqrt{2} = 0.707 \), \(|G(j\omega)| \) will peak higher than DC gain at the resonance frequency

\[\omega_R = \omega_n \sqrt{1 - 2\zeta^2} \]
Peak Frequency Gain

The peak value is given by: \[M_R = \frac{1}{2\zeta \sqrt{1 - \zeta^2}} \]

Note: \[M_R \left(\zeta = 1/\sqrt{2} \right) = \frac{1}{2 \cdot \frac{1}{\sqrt{2}} \sqrt{1 - \frac{1}{2}}} = \frac{1}{2 \cdot \frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}} = 1 \]

(a system with \(\zeta = 1/\sqrt{2} \) is termed maximally flat)

\[\lim_{\zeta \to 0} M_R(\zeta) = \infty \]

Clearly since \(R_1 \to 0 \) and \(\frac{1}{R_1} \to \infty \)

\(\omega_R \) and \(M_R \) may be computed and the Bode plots may be sketched.

The Bode angle plot always starts off at 0° for a second order system, crosses at -90° and asymptotically approaches -180°.
Lightly Damped Systems

The lower the ζ, the sharper the peak on the magnitude plot and the steeper the curve on the angle plot.

At $\zeta = 0$ the peak is infinite on the magnitude plot and the phase shift drops vertically from 0° to -180°.

[(Diagram of complex plane with points (x + yj) and (x - yj) and angles θ_1 and θ_2)]
2nd Order System Bode Plots, ($\zeta = 0, .1, ..., 1$)
2nd Order Systems

- Everything applies, except the break point
- Magnitude and Phase with $s = j\omega$

$$G(s) = C_0 \frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

“Double” Breakpoint at ω_n
Bode Plots Approximations

• Because Double break point at ω_n
• If in $s^2+2\xi\omega_n s+\omega_n^2$ in denominator
 • -40 db/decade in denominator at ω_n
 • -180 deg shift (starting a decade below, to decade above at ω_n)
 • -90 deg at break point at ω_n
\[G(s) = \frac{9}{s^2 + 2s + 9} \]
$$G(s) = \frac{9}{s^3 + 2s^2 + 9s}$$
$$G(s) = \frac{(s+1)}{(s^2+2s+100)}$$