
Linear Regression and Multilinear Regression

1 Linear Regression

For this section, assume that we are given data points in the form (xi, yi) for i = 1, . . . , N
and that we desire to fit a line to these data points. So, we need to find the slope and
y–intercept that make a line fit these data “best.” The approach used in linear regression is
to minimize the sum of the squares of the differences between the data and a line; that is,
find the values of a and b that minimize the sum

R2 =
N∑

i=1

(axi + b− yi)
2. (1)

Minimizing this sum is called least squares minimization.
The minimum of the sum above will occur at a critical point. By the first derivative test

from calculus, we can find critical points by solving the system
∂R2

∂a
= 0

∂R2

∂b
= 0

(2)

Specifically, finding the partial derivatives and rewriting gives
a

∑
x2

i + b
∑

xi =
∑

xiyi

a
∑

xi + Nb =
∑

yi

(3)

Since the values
∑

x2
i ,

∑
xi,

∑
xiyi,

∑
yi can be computed, the above is a system of 2 equa-

tions in 2 unknowns. These equations are known as the normal equations.
For example, consider performing linear regression on the data points

(1, 10.1), (2, 10.4), (3, 10.9), (4, 10.8), (5, 11.0)

Then, the normal equations in Eq. (3) become
55 a + 15 b = 161.8

15 a + 5 b = 53.2

Solving this system gives a = 0.22, b = 9.98. So, the regression line (the line of “best fit”)
for the above data is y = 0.22x + 9.98.
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The normal equations in Eq. (3) can be solved to obtain general expressions for a and
b. These are the nasty formulas that are often taught in traditional, elementary statistics
courses. The formulas are:

a =

∑
yi

∑
x2

i −
∑

xi

∑
xiyi

N
∑

x2
i − (

∑
xi)

2

b =
N

∑
xiyi −

∑
xi

∑
yi

N
∑

x2
i − (

∑
xi)

2

Using matrices makes dealing with the normal equations a little easier. For example, we
can write the normal equations in Eq. (3) as(∑

x2
i

∑
xi∑

xi N

) (
a
b

)
=

(∑
xiyi∑
yi

)
To solve this system, we must invert the 2-by-2 coefficient matrix and multiply it on both
sides to get (

a
b

)
=

(∑
x2

i

∑
xi∑

xi N

)−1 (∑
xiyi∑
yi

)
So, the real work in solving this system is in inverting (if possible) the coefficient matrix.

Most of the applications of linear regression involve a large number of data points, and
hence, a simple way of computing the coefficient matrix is useful. The standard approach
is to create the coefficient matrix from another matrix which is defined using the data as
follows.

A =


x1 1
x2 1
x3 1
...

...
xN 1


Then, we can write

AtA =

(∑
x2

i

∑
xi∑

xi N

)
, At Y =

(∑
xiyi∑
yi

)
.

(Be sure to check by hand that this is true.) Thus, the normal equations can be written

AtAW = At Y (4)

with

W =

(
a
b

)
, Y =


y1

y2

y3
...

yN

 .
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The solution to this matrix equation is then

W = (AtA)−1At Y, (5)

if (AtA)−1 exists.
Although the definition for A appears to be arbitrarily chosen, there is a good reason

behind it. Remember that for linear regression, we want to find a, b so that we can reproduce
yi from xi for each data point. Specifically, we want

ax1 + b = y1

ax2 + b = y2

ax3 + b = y3

...

axN + b = yN

This system of equations can also be written using our definition of A, W, and Y as

AW = Y.

To solve this system, we would like to multiply by A−1 on both sides. BUT, A is not a square
matrix and cannot be inverted. So, we need to rewrite the system so that we have a square
matrix involved. To do this, multiply both sides of the matrix equation by At to obtain the
matrix version of the normal equations

AtAW = AtY.

So, the definition of A “makes sense” and works!

2 Multilinear Regression

With multilinear regression, we assume that the dependent data, yi, depends linearly on
several independent variables, x1, x2, . . . , xk. For the purposes of this discussion, assume
that the given data depends only on two independent variables. So, data points are of the
form

(x11, x21, y1), (x12, x22, y2), (x13, x23, y3), . . . , (x1N , x2N , yN)

The goal is to minimize the sum

R2 =
N∑

i=1

(a1x1i + a2x2i + b− yi)
2. (6)
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Ideally, we want to find a0, a1, a2 so that

a1x11 + a2x21 + b = y1

a1x12 + a2x22 + b = y2

a1x13 + a2x23 + b = y3

...

a1x1N + a2x2N + b = yN

Rewrite this system as
AW = Y,

where

A =


x11 x21 1
x12 x22 1
x13 x23 1
...

...
...

x1N x2N 1

 , W =

a1

a2

b

 , Y =


y1

y2

y3
...

yN

 .

To solve this system, we would like to multiply by A−1 on both sides. BUT, A is not a square
matrix and cannot be inverted. So, we need to rewrite the system so that we have a square
matrix involved. To do this, multiply both sides of the matrix equation by At to obtain

AtAW = AtY.

Note that this equation is the same as Eq. (4). The difference lies only in how the coefficient
matrix A is created. Indeed, if you take the partial derivatives ∂R2/∂a1, ∂R2/∂a2, and
∂R2/∂b as we did in linear regression, you will find that the equation above represents the
normal equations in multilinear regression.

Now, AtA is a square matrix. We can multiply by its inverse on both sides of our system,
if it exists. Thus, the solution for multilinear regression is

W = (AtA)−1At Y, (7)

if (AtA)−1 exists. The fact that the matrix equations for linear and multilinear regression
appear the same make this matrix approach very appealing. Also, there are lots of numerical
methods for finding (AtA)−1 accurately.

Finally, consider the data set below as an example.

(0, 0.30, 10.14),(0.69, 0.60, 11.93), (1.10, 0.90, 13.57)

(1.39, 1.20, 14.17),(1.61, 1.50, 15.25), (1.79, 1.80, 16.15)
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Then,

A =


0 0.30 1

0.69 0.60 1
1.10 0.90 1
1.39 1.20 1
1.61 1.50 1
1.79 1.80 1

 , Y =


10.14
11.93
13.57
14.17
15.25
16.15


and so

AtA =

9.41 8.71 6.58
8.71 8.19 6.30
6.58 6.30 6.00

 .

Then,

W =

a1

a2

b

 = (AtA)−1At Y =

2.09
1.50
9.69

 .

Thus, the line that best fits the data is y = 2.09x1 + 1.50x2 + 9.69.

5


