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Abstract

This paper presents a very efficient technique for approximating the ideal SSNMR powder
pattern using the arithmetic-geometric mean and demonstrates finding an initial fitting of
the ideal powder pattern to an experimental spectrum via Marr-Hildreth edge detection. In
particular, the edge detection approach is used to identify possible values for the principal
values of the chemical shielding tensor. These possibilities are then evaluated using a heuris-
tic approach for choosing the best estimates of the principal values based on a measure of
edge strength and the sign of the third derivative of the broadened experimental spectrum.
We present a detailed mathematical development of the ideal SSNMR powder spectrum and
of the arithmetic geometric mean and summarize the fundamental ideas of line broadening
and edge detection. The algorithms in the paper are demonstrated in a program supplied in
the appendix and are applied to experimental data from [13C1]-leucine.

Key Words: Solid-state NMR, powder spectrum, arithmetic-geometric mean, edge detec-
tion

1This is a preprint of an article published in ”Concepts in Magnetic Resonance”, January 2007.
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1 Introduction

Solid-state nuclear magnetic resonance (SSNMR) is a powerful tool for determining 3-
dimensional molecular structures of membrane proteins, which have proven difficult to study
using crystallography or solution NMR. From SSNMR experiments in which membrane pro-
teins are inserted into membranes and aligned with the magnetic field direction, orientational
constraints on the structure can be obtained that lead to characterizations of a protein’s
structure [1, 2, 3, 4]. To obtain orientational constraints from 1-dimensional experiments
on oriented samples, the principal values of the chemical shielding tensor must be deter-
mined from 1-dimensional powder pattern spectra. The method of edge detection provides
an efficient approach for finding the principal values of the chemical shielding tensor.

Simulated powder pattern spectra for axially symmetric tensors can be easily computed;
however, nonaxially symmetric tensors are represented as elliptic integrals of the first kind,
which cannot be computed analytically. Section 2 will present the development of this elliptic
integral.

Many previous simulation methods have approximated the required integrals using sum-
mation and grid methods, which demand significant amounts of computer memory and
processor time. The arithmetic-geometric mean (AGM) developed independently by Gauss
and Lagrange, however, gives an algorithm for approximating an elliptic integral of the first
kind that is simple, converges very quickly, and requires little computer memory. Section
3 explains the AGM and its properties with emphasis on the key theorem connecting the
AGM to the elliptic integral of the first kind.

Sections 4 and 5 present line broadening and the method of edge detection along with
a heuristic algorithm for selecting the principal values of the chemical shielding tensor from
the results of performing edge detection. Finally, section 6 demonstrates the use of the above
methods in finding the principal values of the chemical shielding tensor and fitting the ideal
spectrum to the experimental spectrum using experimental 13C data

2 Computing 1D SSNMR Powder Patterns

Based on quantum physics [5, 6], chemical shielding can be represented as the value of a
quadratic form associated with a symmetric second–rank tensor at a unit magnetic field
vector, B. When written in its principal axis frame (PAF), the chemical shielding tensor
is diagonalized with principal values δ33 ≤ δ22 ≤ δ11 on the diagonal, as represented in the
deshielding δ-scale [7]. Thus, the chemical shielding, ω, can be expressed as

ω = Bt

δ33 0 0
0 δ22 0
0 0 δ11

B

= δ33 cos2 α sin2 β + δ22 sin2 α sin2 β + δ11 cos2 β, (1)

where the unit magnetic field vector B is written in spherical coordinates in the PAF as

B = (cos α sin β, sin α sin β, cos β)t (2)
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with t denoting matrix transpose. Here, α is the polar angle and β is the azimuthal angle
(see Figure 1) with 0 ≤ α < 360◦ and 0 ≤ β ≤ 180◦.

In a solid-state NMR powder spectrum, the intensity, I, at a particular frequency, δ, is
proportional to the probability that the magnetic field vector, B, will have coordinates (α, β)
in the PAF of a randomly selected molecule in a given sample [5]. Equivalently, I can be
viewed as proportional to the probability that a randomly chosen molecule will resonate at
frequency δ [8]. Thus, the goal is to compute the relevant probability density function.

Since δ33, δ22, and δ11 are the parameters in computing a powder pattern, denote the
intensity as a function of δ by I(δ; δ33, δ22, δ11). Taking |B| = 1, the required probability
density function is the derivative of the cumulative probability that ω(B) ≤ δ. Thus,

I(δ; δ33, δ22, δ11) =
d

dδ

(
Prob(ω(B) ≤ δ)

)
. (3)

To calculate the cumulative probability Prob(ω(B) ≤ δ), integrate over the portion of the
unit sphere on which ω(B) is less than or equal to δ. Call this region Ω. Normalizing by the
total area of the sphere gives the density function

I(δ; δ33, δ22, δ11) =
1

4π

d

dδ

∫∫
Ω

sin β dβ dα, (4)

where Ω = {(α, β)|ω(α, β) ≤ δ} is the portion of the sphere on which the chemical shielding
is less than or equal to the given chemical shielding value of δ. The difficulties that arise in
computing this integral depend on the shape of the region Ω.

2.1 An Axially Symmetric Case

In the axially symmetric case, δ33 = δ22, and the integral in Eq. (4) is taken over the region
Ω with δ33 + (δ11 − δ33) cos2 β ≤ δ. So, 0 ≤ α < 2π, and β must fall between

b+ = cos−1

(√
δ − δ33

δ11 − δ33

)
and b− = cos−1

(
−
√

δ − δ33

δ11 − δ33

)
. (5)

Thus, the intensity function is

I(δ; δ33, δ33, δ11) =
1

4π

d

dδ

∫ 2π

0

∫ b−

b+

sin β dβ dα

=
1

2
√

(δ − δ33)(δ11 − δ33)
. (6)

2.2 The Nonaxially Symmetric Case

The situation for a nonaxially symmetric tensor with δ33 < δ22 < δ11 is more complex and
involves an elliptic integral. To begin, the shape of the region Ω over which we need to
integrate must be determined. Solving

δ33 cos2 α sin2 β + δ22 sin2 α sin2 β + δ11 cos2 β ≤ δ (7)
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for β demonstrates that β is restricted to the values between

b+ = arccos

((
δ − δ22 sin2 α− δ33 cos2 α

δ11 − δ22 sin2 α− δ33 cos2 α

)1/2
)

and

b− = arccos

(
−
(

δ − δ22 sin2 α− δ33 cos2 α

δ11 − δ22 sin2 α− δ33 cos2 α

)1/2
)

. (8)

To determine the possible values of α, first observe that, by symmetry, we can consider
only the orientations of B with 0 ≤ α ≤ π/2 and multiply the integral in Eq. (4) by 4. Now,
to ensure that b+ and b− are defined, the values of α are limited by the requirement that

δ − δ22 sin2 α− δ33 cos2 α

δ11 − δ22 sin2 α− δ33 cos2 α
> 0. (9)

Solving for cos2 α gives

cos2 α >
δ22 − δ

δ22 − δ33

, (10)

which is certainly always satisfied when δ22 < δ < δ11. For δ33 < δ < δ22, this relationship

only holds for 0 ≤ α < arccos
(√

δ22−δ
δ22−δ33

)
.

Clearly, the region Ω is more complex than in the axially symmetric case, since there
are two cases which are determined by the value of δ. To simplify the remainder of the
calculations, we will allow α to take on values between 0 and π/2. To prevent this from
making b+ and b− undefined, we will consider inverse cosine as a complex-valued function
and only deal with the real part of the result. The two forms of the region Ω will again play
a key role in the final calculations of this section.

Now, integrating α from 0 to π/2, multiplying by 4, and taking the real part of the
integral, the intensity function is

I(δ; δ33, δ22, δ11) =
1

π

d

dδ
<e

[∫ π/2

0

∫ b−

b+

sin β dβ dα

]
. (11)

Moving the derivative inside the outer integral, integrating with respect to β, and differen-
tiating gives

I(δ; δ33, δ22, δ11) =

1

π
<e

[ ∫ π/2

0

dα√
(δ − δ22 sin2 α− δ33 cos2 α)(δ11 − δ22 sin2 α− δ33 cos2 α)

]
. (12)

Proceeding as in [8], let s = δ33 cos2 α + δ22 sin2 α so that

dα =
ds

2
√

(δ22 − s)(s− δ33)
. (13)
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Thus,

I(δ; δ33, δ22, δ11) =

1

2π
<e

[∫ δ22

δ33

ds√
(δ11 − s)(s− δ33)(δ − s)(δ22 − s)

]
, (14)

which is an elliptic integral of the first kind.
To write the above integral in another standard form, make the intermediate substitution

s =
δ33(δ22 − δ11)− t δ11(δ22 − δ33)

(δ22 − δ11)− t (δ22 − δ33)
(15)

to obtain the integral

I(δ; δ33, δ22, δ11) =
1

2m π
<e

[ ∫ 1

0

dt√
t(1− t)(1− κ2t)

]
, (16)

where

κ =

√
(δ11 − δ)(δ22 − δ33)

(δ − δ33)(δ11 − δ22)
and m =

√
(δ11 − δ22)(δ − δ33). (17)

Observe that I(δ; δ33, δ22, δ11) is not real-valued for δ33 ≤ δ < δ22, since κ > 1. But,
I(δ; δ33, δ22, δ11) is real-valued for δ22 < δ ≤ δ11, since κ < 1. Importantly, for δ = δ22,
κ = 1, and hence, I(δ22; δ33, δ22, δ11) does not exist.

Next, substitute t = u2 when δ22 < δ ≤ δ11 and t = u2/κ2 when δ33 ≤ δ < δ22 to produce
a standard form of the elliptic integral of the first kind. The result agrees with [9, 10] and is

I(δ; δ33, δ22, δ11) =



1

2
√

(δ11 − δ33)(δ22 − δ33)
, if δ = δ33

1

mκ π
K

(
1

κ

)
, if δ33 < δ < δ22

1

m π
K(κ), if δ22 < δ < δ11

1

2
√

(δ11 − δ22)(δ11 − δ33)
, if δ = δ11

0, if x < δ33 or x > δ11,

(18)

where

K(k) =

∫ 1

0

du√
(1− u2)(1− k2u2)

is the complete elliptic integral of the first kind and κ, m are functions of δ, δ33, δ22, and
δ11 as above. This intensity function has singularities at the resonances δ33, δ22, and δ11.
Unfortunately, neither integral in Eq. (18) can be computed analytically and must be ap-
proximated.
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3 The AGM and Powder Patterns

For applications to SSNMR powder patterns, the challenge of computing the elliptic integral
in Eq. (18) has been approached using several different algorithms. Typically, a sum is used
to approximate the elliptic integral [8, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].
Such methods require the use of correction factors to account for the errors that occur when
approximating an integral by a sum. Another method for specifically approximating elliptic
integrals, however, exists that does not require time-consuming sums, is easy to program,
and can quickly give great accuracy. This algorithm is called the arithmetic-geometric mean
(AGM) and is used to compute elliptic integrals in packages such as Maple and Mathematica.

The AGM and its properties were known in the nineteenth century to Gauss [26] and
Lagrange [27] who discovered them independently. More recently, the book Pi and the AGM
by Borwein and Borwein [28] has renewed interest in the AGM.

Define the arithmetic mean an+1 and the geometric mean bn+1 by

an+1 =
an + bn

2
, bn+1 =

√
anbn (19)

for nonnegative integers n and positive numbers a0 > b0. Before seeing the connection
between these means and elliptic integrals of the first kind, we observe several important
facts.

First, we have the arithmetic-geometric mean inequality

an+1 =
an + bn

2
≥
√

anbn = bn+1 (20)

for all n. Moreover, an is a decreasing sequence of values, while bn is an increasing sequence.
Thus,

a0 ≥ a1 ≥ · · · ≥ an ≥ · · · ≥ bn ≥ · · · ≥ b1 ≥ b0. (21)

Next, as in a recent review [29] of Gauss’s work on the AGM, observe that

an+1 − bn+1 ≤ an+1 − bn =
an − bn

2
. (22)

Induction using this inequality shows that

0 ≤ an − bn ≤
1

2n
(a0 − b0) → 0 as n →∞. (23)

Thus, an and bn converge to the same value as n grows large, and we can define this value
to be a function of the initial values a0 and b0,

M(a0, b0) = lim
n→∞

an = lim
n→∞

bn. (24)

Note also that, for all integers n, an ≥ M(a0, b0) ≥ bn.
Finally, the connection between the AGM and complete elliptic integrals of the first kind

can be given using the following remarkable theorem [28, 30, 31]:

K(k) =
π

2 M(1,
√

1− k2)
. (25)
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(An excellent derivation of this theorem is given in [32].) Since Eq. (18) is a complete elliptic
integral of the first kind, Eq. (25) implies that I(δ; δ33, δ22, δ11) can be computed using the
AGM as follows.

I(δ; δ33, δ22, δ11) =



1

2
√

(δ11 − δ33)(δ22 − δ33)
, if δ = δ33

1

2mκ M(1,
√

1− 1/κ2)
, if δ33 < δ < δ22

1

2m M(1,
√

1− κ2)
, if δ22 < δ < δ11

1

2
√

(δ11 − δ22)(δ11 − δ33)
, if δ = δ11

0, if x < δ33 or x > δ11,

(26)

where

κ =

√
(δ11 − δ)(δ22 − δ33)

(δ − δ33)(δ11 − δ22)
and m =

√
(δ11 − δ22)(δ − δ33). (27)

Using the AGM, the intensity function I(δ; δ33, δ22, δ11) can be computed numerically by
iterating the AGM sequences several times (See Figure 2). As will be seen shortly, only a
few iterations are needed to produce very good accuracy.

To understand the rate of convergence, observe that straightforward calculation with the
definition of the AGM gives

a2
n − b2

n =
1

4
(an−1 − bn−1)

2. (28)

Then, combining this identity with the definition of the AGM and the inequality an+1 ≥
M(a0, b0) produces

(an − bn) =
a2

n − b2
n

2an+1

≤ a2
n − b2

n

2M(a0, b0)
=

(an−1 − bn−1)
2

8M(a0, b0)
. (29)

Thus, the sequences an and bn converge quadratically. This implies that the number of digits
in an and bn that agree will approximately double with every iteration of the AGM. For most
powder patterns, five iterations of the AGM will give an accuracy of at least 10−8.

4 Line Broadening

Having examined the theoretical development of a function for an ideal SSNMR powder pat-
tern and an efficient method for computing such, we now turn to modifying the ideal spectrum
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to include the smoothness and broadness seen in typical SSNMR powder experiments. This
modification is called line broadening or apodization and is simulated mathematically using
convolution.

The convolution of two real-valued functions f and g is defined

f ∗ g(x) =

∫ ∞

−∞
f(x− t)g(t) dt. (30)

Simulated spectra, however, are treated as discrete functions. In this case, the integral can
be approximated using Riemann sums or Simpson’s Rule.

The convolution operation mixes two functions to produce a new function that reflects
some of the properties of each (See Figure 3). This mixing action will allow us to produce
broadened spectra by combining our intensity function, I(δ; δ33, δ22, δ11), from Eq. (26) with
a smooth function. In addition, the convolution operation has convenient mathematical
properties that make it particularly useful. For example, the change of variables u = x − t
can be used to show that f ∗ g = g ∗ f . Some additional properties will be summarized in
the next section.

To get the broadening typically seen in SSNMR powder spectra, the intensity function,
I(δ; δ33, δ22, δ11), is convolved with one of the following smooth functions.

1. The Gaussian, or normal distribution, function is given by

N(x; µ, s) =
1

s
√

2π
exp

(
−(x− µ)2

2s2

)
(31)

with mean µ and standard deviation s.

2. The Lorentzian function is defined

L(x; x0, Γ) =
1

π

Γ

(x− x0)2 + Γ2
(32)

with center x0 and width parameter Γ.

3. The Voigt function is the convolution of independent Gaussian and Lorentzian func-
tions:

V (x; x0, Γ) = N(x; 0, 1) ∗ L(x; x0, Γ). (33)

These functions are chosen to produce different forms of line broadening. For example,
the Gaussian is relatively wide at half-height, while the Lorentzian is thinner at half-height
and the Voigt function produces a shape between the Gaussian and Lorentzian. Figure 4
shows the convolution of the intensity function, I(δ; δ33, δ22, δ11), with a Gaussian to give a
broadened ideal powder spectrum.
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5 Edge Detection

To obtain orientational constraints from one-dimensional SSNMR data on oriented sam-
ples, the principal values, δ33, δ22, δ11, of the chemical shielding tensor in Eq. (1) must be
known. These values can be found by applying one-dimensional Marr-Hildreth edge detection
to an experimental SSNMR powder spectrum. This technique seeks to find the jumps in
broad, noisy data that correspond to the singularities seen in ideal spectra. This method is
commonly used in image and signal analysis and is implemented in electron paramagnetic
resonance spectrometers [33]. For many situations edge detection will be quite effective,
but several other techniques for extracting parameters from spectra exist to handle more
complicated spectra [34, 35, 36].

As a basic example of one-dimensional edge detection, consider the step function

χ[a,∞)(x) =

{
1, if x ≥ a

0, otherwise
(34)

to be the ideal spectrum, and let the convolution χ[a,∞) ∗ N(x; 0, s) be the “experimental”
spectrum. Figure 5 indicates that the inflection point in the graph of χ[a,∞)∗N(x; 0, s) occurs
exactly at x = a where the discontinuity in χ[a,∞) occurs. To verify this, we need some key
properties of the convolution. (See the excellent text [37] for detailed discussion of these
properties.)

Properties: If f is integrable with two continuous derivatives and g is integrable on a closed
interval, then

1. f ∗ g is continous,

2.
d

dx
(f ∗ g) = f ∗ dg

dx
,

3.
d2

dx2
(f ∗ g) = f ∗ d2g

dx2
, and

4.
d

dx
(f ∗ χ[a,∞)) = f(x− a).

(Note that Property 4 indicates that, in essence, the derivative of the step function χ[a,∞) is
the Dirac delta function, δa, at a.) Combining Properties 2 and 4,

d2

dx2

(
χ[a,∞) ∗N(x; 0, s)

)
= N ′(x− a; 0, s) (35)

so that the inflection point in χ[a,∞) ∗N(x; 0, s) occurs exactly at x = a, where N(x−a; 0, s)
has a maximum, as seen in Figure 5.

When working with an SSNMR powder spectrum, the situation is not so simple, since
I(δ; δ33, δ22, δ11) is not differentiable at δ22 and is a much more complicated function than
χ[a,∞). Indeed, the convolution I(δ; δ33, δ22, δ11) ∗ N(δ; 0, s) does not have inflection points
exactly at the jumps at δ33 and δ11. The inflection points, however, do occur near δ33 and δ11.
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In fact, the wider the interval [δ33, δ11] is, the closer the inflection points of I(δ; δ33, δ22, δ11) ∗
N(δ; 0, s) are to δ33 and δ11.

To address the noise found in experimental spectra, we assume that the spectrum is given
by

F (x) = I(δ; δ33, δ22, δ11) ∗N(δ; 0, s) + η(δ), (36)

where η is the noise function. To approximate δ33 and δ11, we wish to find F ′′ and locate the
inflection points for F . However, differentiating a noise function will obscure the information
contained in the signal and produce a very noisy derivative function. So, first, we perform
Gaussian smoothing by convolving F with a Gaussian having a relatively large standard
deviation, t. Then,

F (δ) ∗N(δ; 0, t) = I(δ; δ33, δ22, δ11) ∗N(δ; 0, s) ∗N(δ; 0, t) + η(δ) ∗N(δ; 0, t). (37)

This convolution will dramatically reduce and smooth the noise, allowing us to find the
desired derivatives.

Now, the edge detection strategy is to use Property 3 to find the second derivative

d2

dδ2
(F (δ) ∗N(δ; 0, t)) = F (δ) ∗N ′′(δ; 0, t), (38)

which can be easily programmed by analytically finding N ′′(δ; 0, t) and then convolving it
with the experimental spectrum F . Then, we can find the inflection points for F (δ)∗N(δ; 0, t)
and take these as initial estimates for δ33 and δ11.

In practice, the inflection points are determined by finding the zero-crossings of F (δ) ∗
N ′′(δ; 0, t). Based on the shape of the second derivative of a broadened ideal powder spec-
trum, I(δ; δ33, δ22, δ11) ∗N ′′(δ; 0, t), there should be exactly six zero-crossings with δ33 being
the first and δ11 being the sixth. (See Figure 6.) Of course, noise and possible contributions
from other anisotropic interactions in the signal F will cause additional zero-crossings to
appear in the second derivative, F (δ) ∗N ′′(δ; 0, t). Unfortunately, no general method exists
for selecting candidates for δ33 and δ11 from these zero-crossings that will choose appropriate
values for every possible signal F . Thus, some input from the user will be necessary or a
heuristic must be adopted to guide the algorithm to the best selections in many cases. The
knowledge that six zero-crossings are expected and that the sign of the slope of the second
derivative at each of the six crossings is known can be used to help evaluate the zero-crossings
of F (δ) ∗N ′′(δ; 0, t) as candidates for δ33 and δ11. In particular, the third derivative should
be negative at the first crossing and then should alternate between positive and negative
until reaching the sixth crossing. (See Figure 6.) In addition, the strength of the edge at
each zero-crossing can be computed by examining the length of the interval between the two
relative extrema in F (δ)∗N ′′(δ; 0, t) that most closely border each zero crossing. Larger such
intervals correspond to stronger edges and will be more likely to be one of the six anticipated
zero-crossings.

Finally, the discontinuity at δ22 in I(δ; δ33, δ22, δ11) corresponds closely to the location of
the maximum in F (δ) ∗ N(δ; 0, t) and thus can be found by using Property 2 or by finding
the minimum of F (δ) ∗ N ′′(δ; 0, t). Further fitting of δ33, δ22, δ11 can be performed using a
simple grid search or other methods.
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6 Example Application

To demonstrate the edge detection algorithm of the previous section, we will apply it to the
SSNMR powder spectrum for [13C1]-leucine (Cambridge Isotope Laboratories: Cambridge,
MA). The spectrum was obtained on a Bruker 300 MHz DSX spectrometer using a 4mm
MAS Bruker probe without spinning. Our analysis of the data is limited to the region of
the spectrum containing the signal from the labeled carbonyl. The spectrum was recorded
at room temperature and is referenced to TMS via the literature [39, 40].

The algorithms from this paper were implemented in a python program which is presented
in the appendix. In particular, this program uses the following approach.

1. Input the experimental spectrum from a comma separated values (csv) file.

2. Create the first and second derivatives of F (δ) ∗ N(δ; 0, t) using a large value of t to
smooth the noise as described in section 5 and using the AGM to compute the intensity
I(δ; δ33, δ22, δ11) as in Eq. (26).

3. Locate the zero-crossings of F (δ) ∗ N ′(δ; 0, t) and F (δ) ∗ N ′′(δ; 0, t) along with the
minimum of F (δ) ∗N ′′(δ; 0, t).

4. Determine the edge strength and value of the third derivative at each zero-crossing of
the second derivative.

5. Request that the user then select an estimate for δ33, δ22, δ11 and a guess for the standard
deviation s of the Gaussian for broadening.

6. Refine the value of s by fitting the simulated spectrum to the given data via a simple
grid search.

7. Output the resulting simulated spectrum to a csv file.

Applying our program to the experimental powder spectrum for [13C1]-leucine, we found
the minimum of the second derivative, F (δ) ∗ N ′′(δ; 0, t), to occur at 179.8 ppm, providing
an estimate of δ22. The program also found the zero-crossings for the second derivative, their
edge strengths, and the sign of third derivative as reported in Table 1. Clearly, the zero-
crossings at 79.3 ppm and 259.5 ppm have the smallest edge strengths, making them unlikely
candidates for δ33 and δ11. In addition, we know that the third derivative at δ33 should be
negative, so 89.7 is not δ33. Hence, we estimate that δ33 = 114.5 and δ11 = 238.8 ppm. (See
Figure 7.) A simple grid search suggests a good fit to the data via Gaussian broadening with
standard deviation s = 6.8 ppm, as seen in Figure 8. From the literature, we were able to
find two sets of chemical shielding data for the tensor principal values of [13C1]-Leucine which
were, δ33 = 109, δ22 = 177, δ11 = 243 [39] and δ33 = 108, δ22 = 180, δ11 = 242 [40]. Both of
these sets were determined using MAS but fit our values from a static powder reasonably
well.
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Zero-crossing of Edge strength Sign of
second derivative third derivative

79.3 9.3 -
89.7 17.6 +
114.5 36.3 -
148.7 13.5 +
170.5 13.5 -
187.0 13.5 +
218.1 41.4 -
238.8 11.4 +
255.4 12.4 -
259.5 8.3 +

Table 1: Our program computed the zero-crossings of the second derivative along with the
edge strength and the sign of the third derivative at each. Values 79.3 ppm and 259.5 ppm
have the smallest edge strengths and are not viewed as likely values of δ33 and δ11. Since the
third derivative at δ33 should be negative, we rule out 89.7 ppm as a possibility for δ33, and
estimate δ33 = 114.5 ppm and δ11 = 238.8 ppm.

7 Summary

The methods presented here provide an efficient approach to computing one-dimensional
SSNMR powder patterns and determining the principal values of the chemical shielding
tensor. The arithmetic-geometric mean provides a particularly fast method for computing
the elliptic integral involved in simulating the powder spectrum for a nonaxially symmetric
powder. Marr-Hildreth edge detection uses the zeros of the second derivative of a broadened
experimental spectrum to find candidate values for δ33 and δ11. These values are evaluated
by considering the edge strength and the sign of the third derivative at each value. Combined
with knowledge of the shape of the third derivative of a broadened ideal spectrum, we can
then determine the best estimates for δ33 and δ11. Finally, δ22 can be found by looking for
the minimum value of the second derivative. In our example, the algorithms gave values for
δ33, δ22, and δ11 for [13C1]-Leucine that were consistent with the literature.

8 Appendix

The program in this appendix implements the algorithm described in this paper for simulat-
ing one-dimensional solid-state NMR powder spectra using the arithmetic-geometric mean
and for finding the principal values of the chemical shielding tensor using edge detection.
This program can be downloaded from http://faculty.mercer.edu/denny jk/cmr.html.
The program is written in the python programming language (version 2.4) which is freely
available at http://www.python.org.

#Filename: powder.py

#Import the necessary libraries

12



import string

import math

import operator

####################################

# #

# define functions #

# #

####################################

#********************************************************************

# Function : rdcsv *

# Purpose : Read in data from a csv file *

# Parameters : name (string) *

# Returns : list containing a list of data in each line of file *

#********************************************************************

def rdcsv(name):

f = open(name,"r")

data = []

tmp = f.readline()

while tmp !="":

onerow = tmp.split(",")

last = len(onerow)-1

k = len(onerow[last])

if k!= 1:

onerow[last] = onerow[last][0:k-1]

if len(onerow) != 0:

data.append(onerow)

tmp = f.readline()

f.close()

return(data)

#********************************************************************

# Function : outcsv *

# Purpose : Write data out to a csv file *

# Parameters : name (string) *

# data (list of data points) *

# Returns : n/a *

#********************************************************************

def outcsv(name,data):

f = open(name,"w")

for i in range(0,len(data)):

tmp = ""
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for j in range(0,len(data[i])):

tmp = tmp + str(data[i][j]) + ","

tmp = tmp[0:len(tmp)-1]+"\n"

f.writelines(tmp)

f.close()

#********************************************************************

# Function : norm *

# Purpose : Integrate the data using Simpson’s Rule *

# Parameters : data (list of data points) *

# Returns : integral of the data *

#********************************************************************

def norm(data):

sum=0

dx = abs(data[1][0]-data[0][0])

for i in range(0,len(data)):

sum+=data[i][1]*2**((i % 2)+1)

return(sum*dx/3.0)

#********************************************************************

# Function : normalize *

# Purpose : Normalize data so that the integral is 1 *

# Parameters : data (list of data points) *

# Returns : list of data points *

#********************************************************************

def normalize(data):

area = norm(data)

for i in range(0,len(data)):

data[i][1] = data[i][1]/area

return(data)

#********************************************************************

# Function : agm *

# Purpose : Compute the arithmetic-geometric mean M(a,b) *

# Parameters : a,b (float) *

# Returns : float *

#********************************************************************

def agm(a,b):

a1 = a

b1 = b

for i in range(0,5):

a2 = (a1+b1)/2.0

b2 = math.sqrt(a1*b1)

a1=a2

b1=b2
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return(a1)

#********************************************************************

# Function : intensity *

# Purpose : Compute the intensity function for the ideal powder *

# spectrum (nonaxially symmetric case) *

# Parameters : delta,d1,d2,d3 (float) *

# Returns : float *

#********************************************************************

def intensity(delta,d3,d2,d1):

if (delta<=d3):

return(0)

elif (delta<d2):

m = math.sqrt((d1-d2)*(delta-d3))

kappa = math.sqrt(((d1-delta)*(d2-d3))/((delta-d3)*(d1-d2)))

return(1/(2*m*kappa*agm(1,math.sqrt(1-1/(kappa*kappa)))))

elif (delta==d2):

return(intensity(d2+.0001,d3,d2,d1))

elif (delta<d1):

m = math.sqrt((d1-d2)*(delta-d3))

kappa = math.sqrt(((d1-delta)*(d2-d3))/((delta-d3)*(d1-d2)))

return(1/(2*m*agm(1,math.sqrt(1-kappa*kappa))))

else:

return(0)

#********************************************************************

# Function : convolution *

# Purpose : Compute the convolution of two data sets using *

# Simpson’s Rule *

# Parameters : a,b (list) *

# dx (float) *

# Returns : list of floats *

#********************************************************************

def convolution(a,b,dx):

c = []

if (len(a)!=len(b)):

print("ERROR")

else:

for i in range(0,2*len(a)):

c.append(0)

for j in range(0,len(a)):

k = i-j

if not((k<0) or (k>len(a)-1)):

c[i]+=a[k]*b[j]*2**((j % 2)+1)
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else:

c[i]+=0

c[i] = c[i]*dx/3.0

return(c)

#********************************************************************

# Function : Gaussian *

# Purpose : Compute the Gaussian at x with mean mu *

# and standard deviation sigma *

# Parameters : x,mu,sigma (float) *

# Returns : float *

#********************************************************************

def Gaussian(x,mu,sigma):

pi = 4*math.atan(1)

return(1/(sigma*math.sqrt(2*pi))*math.exp(-((x-mu)*(x-mu))/

(2*sigma*sigma)))

#********************************************************************

# Function : GaussianFirstDeriv *

# Purpose : Compute the first derivative of the Gaussian at *

# x with mean mu and standard deviation sigma *

# Parameters : x,mu,sigma (float) *

# Returns : float *

#********************************************************************

def GaussianFirstDeriv(x,mu,sigma):

pi = 4*math.atan(1)

coeff = -(x-mu)/(sigma*sigma*sigma*math.sqrt(2*pi))

exponential = math.exp(-((x-mu)*(x-mu))/(2*sigma*sigma))

return(coeff*exponential)

#********************************************************************

# Function : GaussianSecondDeriv *

# Purpose : Compute the second derivative of the Gaussian at *

# x with mean mu and standard deviation sigma *

# Parameters : x,mu,sigma (float) *

# Returns : float *

#********************************************************************

def GaussianSecondDeriv(x,mu,sigma):

pi = 4*math.atan(1)

coeff = 1/(sigma*sigma*sigma*math.sqrt(2*pi))*((x-mu)*(x-mu)/

(sigma*sigma)-1)

exponential = math.exp(-((x-mu)*(x-mu))/(2*sigma*sigma))

return(coeff*exponential)

#********************************************************************
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# Function : GaussianThirdDeriv *

# Purpose : Compute the third derivative of the Gaussian at *

# x with mean mu and standard deviation sigma *

# Parameters : x,mu,sigma (float) *

# Returns : float *

#********************************************************************

def GaussianThirdDeriv(x,mu,sigma):

pi = 4*math.atan(1)

coeff = 1/(sigma**7*math.sqrt(2*pi))*((x-mu)*(3*sigma*sigma-x*x

+2*x*mu-mu*mu))

exponential = math.exp(-((x-mu)*(x-mu))/(2*sigma*sigma))

return(coeff*exponential)

#********************************************************************

# Function : findzeros *

# Purpose : Compute the list of independent variable values at *

# which the dependent variable values cross the *

# independent axis *

# Parameters : data (list of data points) *

# Returns : list of zero crossings *

#********************************************************************

def findzeros(data):

zeros = []

for i in range(0,len(data)-1):

if data[i][1]*data[i+1][1]<0:

zeros.append(data[i])

return(zeros)

#********************************************************************

# Function : phi *

# Purpose : Compute l^2 norm of the difference between the data *

# lists *

# Parameters : data1 (list of data points) *

# data2 (list of data points) *

# Returns : float *

#********************************************************************

def phi(data1,data2):

dx = data1[1][0]-data1[0][0]

k=abs(int(round((data1[0][0]-data2[0][0])/dx)))

sum = 0

for i in range(0,len(data1)):

sum += (data1[i][1] - data2[k+i][1])**2

norm = math.sqrt(sum*dx)

return(norm)
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#********************************************************************

# Function : edgedetect *

# Purpose : Compute possible independent variable values at which*

# the data has an edge and at which the data will have *

# a maximum *

# Parameters : data (list of data points) *

# Returns : list of first deriv. zero crossings *

# list of second deriv. zero crossings *

# list of minimum values of the second deriv. *

#********************************************************************

def edgedetect(data):

#compute stepsize dx from the data set

dx = abs(data[1][0]-data[0][0])

#extract the dependent variable values from the

#data set for analysis

n = len(data)

dep_var_values = []

for i in range(0,n):

dep_var_values.append(data[i][1])

#generate first and second derivatives of the broadening function

gx0 = -n*dx/2.0

gaussian_first_deriv = []

gaussian_second_deriv = []

indep_var_values = []

for i in range(0,n):

indep_var_values.append(gx0+i*dx)

#make sigma large to smooth noise

sigma = 5.0

gaussian_first_deriv.append(GaussianFirstDeriv(gx0+i*dx,0,sigma))

gaussian_second_deriv.append(GaussianSecondDeriv(gx0+i*dx,0,sigma))

#compute the convolutions

convolved_first_deriv =

convolution(dep_var_values,gaussian_first_deriv,dx)

convolved_second_deriv =

convolution(dep_var_values,gaussian_second_deriv,dx)

#Reconstruct data points

gaussian_first_deriv_pts=[]

gaussian_second_deriv_pts=[]

for i in range(0,n):

gaussian_first_deriv_pts.append([indep_var_values[i],

gaussian_first_deriv[i]])
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gaussian_second_deriv_pts.append([indep_var_values[i],

gaussian_second_deriv[i]])

convol_first_deriv_pts=[]

convol_second_deriv_pts=[]

for i in range(0,len(convolved_first_deriv)):

convol_first_deriv_pts.append([indep_var_values[0]+data[0][0]+i*dx,

convolved_first_deriv[i]])

convol_second_deriv_pts.append([indep_var_values[0]+data[0][0]+i*dx,

convolved_second_deriv[i]])

#find the zeros of the first and second derivatives

first_deriv_zeros= findzeros(convol_first_deriv_pts)

second_deriv_zeros= findzeros(convol_second_deriv_pts)

#find the region of the minimum of the second derivative

convol_second_deriv_pts_sorted = sorted(convol_second_deriv_pts,

key=operator.itemgetter(1))

min_second_deriv = convol_second_deriv_pts_sorted[0:5]

return(first_deriv_zeros,second_deriv_zeros,min_second_deriv)

#********************************************************************

# Function : gridsearch *

# Purpose : Use a simple grid search to optimize the fitting. *

# Parameters : data (list of data points) *

# delta33,delta22,delta11,sigma (float) *

# Returns : list of data for fitted, simulated spectrum *

#********************************************************************

def gridsearch(data,delta33,delta22,delta11,sigma):

n = len(data) - (len(data) % 2)

dx = abs(data[1][0]-data[0][0])

small = [1.0,0]

numpts = 20

step = 2.0/float(numpts)

for j in range(0,numpts+1):

stdev = sigma-1+j*step

#produce the ideal spectrum

x0 = data[0][0]

simulated_dep = []

simulated_indep = []

for i in range(0,n):

simulated_indep.append(x0+dx*i)

simulated_dep.append(intensity(x0+dx*i,delta33,delta22,delta11))
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#produce the gaussian

gx0 = -n*dx/2.0

gaussian_indep = []

gaussian_dep = []

for i in range(0,n):

gaussian_indep.append(gx0+i*dx)

gaussian_dep.append(Gaussian(gx0+i*dx,0,stdev))

#do the convolution

broadened = convolution(simulated_dep,gaussian_dep,dx)

#add dependent coordinates

broadened_pts=[]

gaussian_pts=[]

for i in range(0,n):

gaussian_pts.append([gaussian_indep[i],gaussian_dep[i]])

for i in range(0,len(broadened)):

broadened_pts.append([gx0+simulated_indep[0]+i*dx,broadened[i]])

broadened_pts=normalize(broadened_pts)

r = phi(data,broadened_pts)

print "||data - broadened|| = "+str(r)

print [r,stdev]

#compare and update

if r < small[0]:

small = [r,stdev]

print small

print small

return(broadened_pts)

#********************************************************************

# Function : gatherinformation *

# Purpose : Collect strength and third deriv. values for use *

# in determining key zero-crossings of second deriv. *

# Parameters : info (list of the results from edgedetect function *

# data (list of data points) *

# Returns : list of data for fitted, simulated spectrum *

#********************************************************************

def gatherinformation(info,data):

second = info[1]

#generate the third derivative

dx = abs(data[1][0]-data[0][0])
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n = len(data)

dep_var_values = []

for i in range(0,n):

dep_var_values.append(data[i][1])

gx0 = -n*dx/2.0

gaussian_third_deriv = []

indep_var_values = []

for i in range(0,n):

indep_var_values.append(gx0+i*dx)

#make sigma large to smooth noise

sigma = 5.0

gaussian_third_deriv.append(GaussianThirdDeriv(gx0+i*dx,0,sigma))

convolved_third_deriv = convolution(dep_var_values,gaussian_third_deriv,dx)

convol_third_deriv_pts=[]

for i in range(0,len(convolved_third_deriv)):

convol_third_deriv_pts.append([indep_var_values[0]+data[0][0]+i*dx,

convolved_third_deriv[i]])

third = findzeros(convol_third_deriv_pts)

result = []

for i in range(0,len(second)):

for j in range(i,len(third)):

if (second[i][0] > third[j][0]) and (second[i][0]<third[j+1][0]):

result.append([second[i][0],third[j+1][0]-third[j][0]])

#find the value of the third deriv. at each zero-crossing

for i in range(0,len(result)):

for j in range(0,len(convol_third_deriv_pts)):

if (result[i][0] == convol_third_deriv_pts[j][0]):

result[i].append(convol_third_deriv_pts[j][1])

return(result)

####################################

# #

# main section of code #

# #

####################################

#

#Edge Detection routine

#
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#read in data

filename = "spectrum.csv"

data = rdcsv(filename)

data.reverse()

#convert data from strings to floats

for i in range(0,len(data)):

for j in range(0,2):

data[i][j] = float(data[i][j])

#normalize the data set

data = normalize(data)

results = edgedetect(data)

print "The approximate zeros of the first derivative are:"

for i in range(0,len(results[0])):

print results[0][i]

print

print "The region of the minimum of the second derivative is:"

for i in range(0,len(results[2])):

print results[2][i]

print

print "Use the above values to approximate delta22."

print

print "Approximate zeros of the second derivative:"

print

information = gatherinformation(results,data)

print "Edge candidate\t edge strength\t sign of third derivative"

for i in range(0,len(information)):

print str(information[i][0])+"\t "+str(information[i][1])+"\t "

+str(information[i][2])

print

print "Now, use the above informatio to determine values for"

print "delta33 < delta22 < delta11."

delta33 = float(raw_input("Enter delta33: "))

delta22 = float(raw_input("Enter delta22: "))

delta11 = float(raw_input("Enter delta11: "))

sigma = float(raw_input("Enter a guess for the standard deviation of

the Gaussian for broadening:"))

print

fit_simulation = gridsearch(data,delta33,delta22,delta11,sigma)

fit_simulation.reverse()

data.reverse()

outcsv("fit.csv",fit_simulation)
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outcsv("newdata.csv",data)
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Captions for “Computing and Fitting SSNMR Powder Patterns with the
Arithmetic-Geometric Mean and Edge Detection”

by
Denny, Daniel, and Kovacs

Figure 1
The angles α and β are the spherical coordinates of the unit magnetic field direction

vector, B, in the principal axis frame (PAF).

Figure 2
Given the principal values δ33, δ22, δ11 of the chemical shielding tensor, the arithmetic-

geometric mean (AGM) gives an efficient method for computing each point, I(δ; δ33, δ22, δ11),
on a nonaxially symmetric ideal powder spectrum.

Figure 3
The square wave (a) is convolved with N(x; 0, 0.2) shown in (b). The convolution oper-

ation results in the function plotted in (c) which is continuous and differentiable and is a
mixture of the shapes from (a) and (b).

Figure 4
An ideal powder spectrum is convolved with a Gaussian to produce this broadened,

smooth ideal spectrum, I(δ; δ33, δ22, δ11) ∗N(δ; 0, s).

Figure 5
As an elementary example of edge detection, consider the broadened spectrum χ[a,∞) ∗

N(x; 0, s), shown in (b). The value a at which the ideal spectrum, χ[a,∞), in (a) has its step
can be found exactly by finding the inflection point in the broadened spectrum (b). The
inflection point occurs at the maximum of the first derivative (c) or at the zero-crossing of
the second derivative (d). For more complex ideal spectra, the location of the inflection
point of the broadened spectrum is a close approximation to the location of a jump in the
ideal spectrum.

Figure 6
The second derivative of the broadened ideal powder spectrum, I(δ; δ33, δ22, δ11)∗N ′′(δ; 0, t),

has six zero-crossings. The first and last zero-crossing estimate the values of δ33 and δ11,
respectively. Note that the slope of the second derivative (and thus the value of the third
derivative) is negative at δ33 and alternates until reaching δ11. In addition, the minimum of
the second derivative occurs at δ22.

Figure 7
Edge detection is applied to an SSNMR powder spectrum, F (δ), for [13C1]-leucine. The

plot shows the experimental spectrum in black containing the signal from the labeled car-
bonyl and the second derivative F (δ) ∗N ′′(δ; 0, 5) in gray. The zero-crossings of the second
derivative are summarized in Table 1. Based on the strength of the edges and the val-
ues of the third derivatives at these zero-crossings, we estimate that δ33 = 114.5 ppm and
δ11 = 238.8 ppm. In addition, the minimum of the second derivative corresponds to the
maximum of F (δ), giving δ22 = 179.8 ppm.
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Figure 8
The ideal spectrum I(δ; 114.5, 178.9, 238.8) broadened by convolution with the Gaussian

N(δ; 0, 6.8) is plotted in gray with the experimental spectrum in black. The asymmetry in
the experimental spectrum may represent the contribution of another anisotropic interaction
to the spectrum.
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