EVE 402/502

Air Pollution Generation and Control

- 1. Introduction to Particulate Matter
- 2. Real (old) data in Atlanta

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Background

- What is PM_{2.5}?
 - Solid (or liquid) particles with aerodynamic diameters < 2.5 μm
- Why is the 2.5 μ m distinction used?
 - Fine particles: insufficient inertia to deposit in nasal passages (imbed deep within lungs)
 - <u>Toxicity</u>: particles of this size contain chemicals that may be toxic

Background

- What are the sources of PM_{2.5}?
 - Anthropogenic
 - <u>Primary</u>: IC engines, fireplaces, meat-cooking operations, industrial processes
 - Secondary: atmospheric conversions of SO_2 and NO_x to $SO_4^{2^-}$ and NO_3^- , respectively
 - Biogenic
 - Primary: volcanoes, soil erosion, sea spray
 - <u>Secondary</u>: atmospheric conversion of organic gases to particulate organic carbon

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)		
nd		
4 2		
1 _{2.5} ?		
s, meat-cooking		
es		
rersions of SO ₂ and NO _x to		
on, sea spray		
ersion of organic gases to		
© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)		

Background

- What are the effects of PM_{2,5}?
 - Environmental impacts: visibility degradation, natural water acidification
 - Human health impacts
 - Morbidity (decreased lung function, increased respiratory hospitalizations, school absenteeism)
 - Mortality (cancer, cardiovascular disease)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com

Background

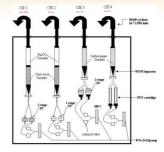
- What are the current rules for PM_{2.5}?
 - USEPA National Ambient Air Quality Standards (NAAQS)
 - 35 $\mu g/m^3$ 24-hr average, 98th percentile (3 yr avg.)
 - 12 μg/m³ annual mean, averaged over 3 years
 - NAAQS require monitoring (attainment status may affect federal funding)
 - Constitutionality of EPA's role in setting NAAQS has been debated (and debated) in US courts

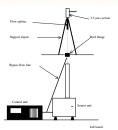
© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com

Problem Identification and Research Objectives

- ASACA goal: Fully characterize PM_{2.5} spatially and temporally over one year
- Specific objectives of this work:
 - Develop an urban PM_{2.5} monitoring network
 - Describe temporal and spatial distributions of PM_{2.5} (assess homogeneity)
 - Develop statistical models for estimating PM_{2.5} levels
 - Estimate secondary organic aerosol formation
 - Source ID; Increase power of health studies


)	
)	
1)	


Sampling Methods

- Particulate Composition Monitor (PCM)
 - Manual, filter-based multi-channel system
 - 24-hr integrated samples: ions, metals, carboncontaining species
- TEOM®
 - Commercially available, continuous mass
 - Retrofit with Nafion® dryer to minimize volatilization

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Schematics of PCM and TEOM

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Analytical Methods

- Ion chromatography (SO₄², NO₃, NH₄*)

 Species extracted from nylon filters using 30 ml ultrapure water and 1 ml CH₃OH
- 97% extraction efficiency (Russel and Cass, 1984)
- Thermal-optical transmittance (OC/EC)
 - OC and EC volatilized in two stages
 - Oxidation to CO₂, reduction to CH₄, FID quant.
 - "Split point" determined by laser transmittance
- · ICP-AES (crustal and trace metals)
 - Species extracted from teflon filters in acid solution
 - Extract "nebulized" into Ar plasma (10,000°C); valence eexcited; characteristic photon emitted

0	2009	Jones	and	Bartlett Publishers,	LLC	(www.jbpub.com

Monitoring Locations and Site Characteristics

- TEOM and PCM (FT and TU)
 TEOM only (JST)
 PCM only (SD)

Site Characteristics

Site	Description	Coordinates
Jefferson St (JST)		33.777, -84.414
Fort McPherson (FT)	Urban, near major highway	33.699, -84.443
South Dekalb (SD)	Residential, near maj. highway	33.688, -84.290
Tucker (TU)	Suburban/commercial	33.84884.214

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Temporal Analysis of PM_{2.5} Mass Data

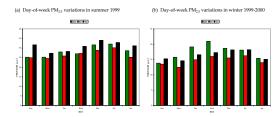
Summary statistics

	Ann. Mean ± SD	Spr. Mean	Sum. Mean	Aut. Mean	Win. Mean	Max 1-hr	Max 24-hr
Site	[ug/m ³]						
JST	21.0 ± 13.8	14.1	28.1	24.3	17.7	97.3	48.6
FT	19.3 ± 11.4	Inc. data	26.8	19.8	14.7	90	45.1
TU	21.2 ± 11.9	18.1	30.8	22.6	16.5	87.9	51.5
SD	19.9 ± 9.7	18.1	27.4	20.5	15		140*

* Possible outlier (10/15/99)

Remember: Annual NAAQS = 12.0 μg/m³

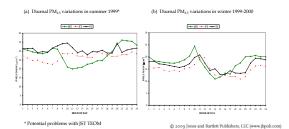
© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)


Temporal Analysis of PM_{2.5} Mass Data

ullet Weekly-averaged and seasonal trends in ${\rm PM}_{2.5}$ mass

(a) Weekly-averaged trends in PM_{2.5} mass

Temporal Analysis of PM_{2.5} Mass Data


Day-of-week variations in PM_{2.5} mass

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com

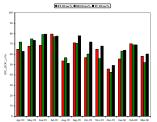
Temporal Analysis of PM_{2.5} Mass Data

• Diurnal variations in PM_{2.5} mass

Spatial interpolation of annual PM₂₅ data Spatial interpolation of Kriged variances (a) Continuous mentions with PM Continuous mentions (b) TEXTRANSION OF TABLE (c) Continuous mentions and all mentions and all mentions of the PM Continuous mentions and all mentions are all all mentio

PM_{2.5} Mass Results

- Temporal
 - Highest values in summer
 - Lowest values on Monday
 - Highest values at night and AM rush
- Spatial
 - Overall, little spatial variation
 - Kriged estimates improved with more sites (Georgia DNR data)


Major Ionic Species Results

- SO₄²⁻
 - Peak values in summer
 - Highest when wind from west (225-315°)
 - Spatially homogeneous
- NO₃⁻
 - Peak values in winter
 - Spatially homogeneous
- NH₄+
 - Peak values in summer
 - Associated with SO₄²⁻ and NO₃⁻
 Spatially homogeneous

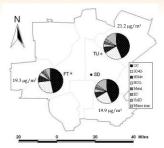
© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Estimation of Secondary Aerosol Production

· Method of Turpin and Huntzicker (1991) and Castro et al. (1999)

OC/EC Results

- Organic carbon
 - Peak values in summer
 - Lowest values on Monday
 - Significant secondary contribution (43-80%)
 - Spatially homogeneous
- Elemental carbon
 - Peak values in summer (August anomaly)
 - Lowest values on weekends

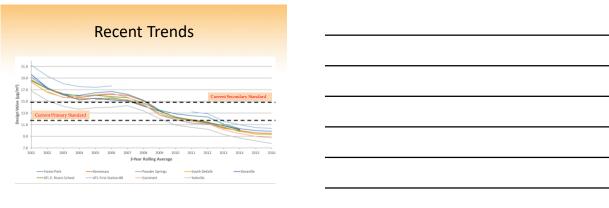

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Elemental Species Results

- Crustal and trace metals
 - Both appear bi-modal (summer, winter)
 - June spike at SD due to road construction
 - Significant spatial variation
- Principal components analysis
 - Motor vehicles, coal-fired power plants, soils dominant
 - Sometimes difficult to distinguish sources

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Average Chemical Composition


Material Balance Results Chemical composition - 31% Organic material (1.4×OC) $-22\%\,{\rm SO_4}^{2\text{-}}$ - 9% NH₄+ - 6.4% NO₃ - 3.2% Metals - 2% EC - 26.4% Unidentifiable material · UM seasonally invariant © 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com) Statistical Modeling of PM_{2.5} Mass Used for estimating PM_{2.5} levels when data unavailable • Models developed for "O₃ season" (April – October 1999) Available data - Tucker + $\rm O_3$, $\rm NO_2$, $\rm SO_2$, T, WSP, WDR, RH, PRECIP, SR, UV - South Dekalb Same as above, except SR, UV Fort McPherson • No supplementary measurements (TU, SD data used) - CO measured at two other locations in metro ATL © 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com) **Model Development** Raw data examined for normality Log-transformations indicated · Multiple linear regression equations derived for 4 - Case 1: Filling in missing day when prior and subsequent day's values available - Case 2: Only prior day's value available - Case 3: Only subsequent day's value avail. - Case 4: "Back-casting"

Statistical Modeling Results Significant potential for retrospective estimation - Up to 74% of variance explained · Spatial estimates limited by site-to-site inconsistencies - Loss of detail acceptable (lack of spatial variability) © 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com) Conclusions Temporal variation in PM_{2.5} concentrations greater than spatial Mean 24-hour levels: 19.3 - 21.2 μg/m³ - Annual NAAQS (back then): 15 $\mu g/m^3$ (3 yrs data) Annual NAAQS (current): 12 μg/m³ (3 yrs data) · Peak levels in summer (mass and all species except NO_3^- - Highest values in August 1999 Slight increase in PM_{2.5} during work week · Late-night, early-morning diurnal peaks © 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com) Conclusions Major ions accounted for ~40% of mass • OC largest single species (~31% of mass) Secondary formation important (43-80%) • Metal species bi-modal

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

- Significant spatial variability

PCA: coal-fired boilers, soils, motor vehicles dominate
 Unidentifiable material invariant with season
 Statistical modeling explained >70% of variance
 Spatial modeling proved unproductive

