EVE 290

Introduction to Environmental Engineering

HW \#3

3.3

Calculate (a) the grams of hydrochloric acid (HCl) that must be diluted to a volume of 1 L to produce a concentration of 0.5 M , and (b) the normality of a 1 L solution containing 45 grams of sodium hydroxide (NaOH).

3.4

Balance the following reactions:
(a) $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{NO}_{3}^{-} \rightarrow \mathrm{N}_{2}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{OH}^{-}$
(b) $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2} \mathrm{~N}+\mathrm{O}_{2}+\mathrm{H}^{+} \rightarrow \mathrm{CO}_{2}+\mathrm{NH}_{4}^{+}+\mathrm{H}_{2} \mathrm{O}$

3.5

Calculate the pH and pOH of a 0.5 N solution of HCl at $25^{\circ} \mathrm{C}$.

3.6

Calculate the pH and pOH of a 0.001 M solution of NaOH at $25^{\circ} \mathrm{C}$.

3.8

Determine the volume in ft^{3} occupied by 120 pounds of CO_{2} at 1.5 atm and $40^{\circ} \mathrm{C}$.

3.9

What volume of O_{2} at $30^{\circ} \mathrm{C}$ and 0.21 atm is required for complete combustion of 20 g of propane gas $\left(\mathrm{C}_{3} \mathrm{H}_{8}\right)$?

