EVE 290

Introduction to Environmental Engineering
HW \#2

2.9

A mass of 0.525 g of sodium chloride (NaCl) has been added to a cylinder containing water. The cylinder diameter is 1.5 inch and the depth of the water in the container is 5 inches. Determine the concentration of the sodium ion in solution, showing the result in (a) mg / L, (b) mass $\%$, and (c) molarity. Ans (a) $1426 \mathrm{mg} / \mathrm{L}$ (b) $\mathbf{0 . 1 4 3 \%}$ (c) 0.062 M

2.10

The sulfur dioxide $\left(\mathrm{SO}_{2}\right)$ stack-gas concentration from fossil-fuel combustion is $2 \mathrm{ppm}_{\mathrm{v}}$. Determine the SO_{2} concentration in units of $\mathrm{mg} / \mathrm{m}^{3}$. Assume $0^{\circ} \mathrm{C}$ and 1 atm pressure. Ans: $5714 \mu \mathrm{~g} / \mathrm{m}^{3}$

2.11

Calculate the volume of 1 mole of SO_{2} at $25^{\circ} \mathrm{C}$ and 1 atm . Express your answer in m^{3}. Ans: $\mathbf{0 . 0 2 5 \mathbf { m } ^ { \mathbf { 3 } }}$

2.12

The smoke inhaled from a cigarette contains approximately $400 \mathrm{ppm}_{\mathrm{v}}$ carbon monoxide. Express this concentration as a percentage of air inhaled. Ans: $\mathbf{0 . 0 4 \%}$

2.14

A rigid cylinder with a volume of 25 L is filled with nitrogen gas to a final pressure of $20,000 \mathrm{kPa}$ at $27^{\circ} \mathrm{C}$. Determine the number of moles of N_{2} gas the cylinder contains. Ans: $\mathbf{2 0 0}$ moles

2.15

A 1-kg block of dry ice (solid CO_{2}) vaporizes to gas at room temperature. Determine the volume of gas produced at $25^{\circ} \mathrm{C}$ and 975 kPa . Ans: 57.8 L

2.16

Assume the discharge from a wastewater treatment plant has a flow of 30 MGD with a solids concentration of $5 \mathrm{mg} / \mathrm{L}$. Determine the mass flow rate of solids discharged in units of $\mathrm{lb}_{\mathrm{m}} / \mathrm{day}$. Ans: $1251 \mathrm{lb} /$ day

2.17

Consider a rectangular wastewater treatment cell having a length of 100 ft , width of 20 ft , and depth of 20 ft . If the flow into the cell is $50 \mathrm{ft}^{3} / \mathrm{min}$, calculate the residence time of the treatment cell. Ans: $\mathbf{8 0 0}$ minutes

