EVE 290

Introduction to Environmental Engineering

HW \#11

1. In a first order process, a blue dye reacts to form a purple dye. The amount of blue dye at the end of 1 hr is 480 g and at the end of 3 hr is 120 g . Graphically estimate the amount of blue dye present initially. (Ans: approx. $\mathbf{9 6 0} \mathbf{g}$)
2. A reaction of great social significance is the fermentation of sugar with yeast. This is a zeroorder reaction, where the yeast is a catalyst. If a 0.5 L bottle contains 4 g of sugar, and it takes 30 min to convert 50% of the sugar, what is the rate constant? (Ans: $\mathbf{0 . 1 3 3} \mathbf{g} / \mathrm{L}-\mathrm{min}$)
3. Integrate the differential equation in which A is being made at a rate k_{1} and simultaneously destroyed at a rate k_{2} :

$$
\frac{d A}{d t}=k_{1} A-k_{2} A
$$

4. A batch reactor (we'll discuss these later) is designed to remove a pollutant by adsorption. The data are as follows:

Time (min)	Pollutant conc. [mg/L]
0	170
5	160
10	98
20	62
30	40
40	27

What order of reaction does this appear to be? Graphically estimate the rate constant.
5. A radioactive nuclide is reduced by 90% in 12 minutes. What is its half-life? Hint: What is the "order" of the reaction process that is associated with radioactivity? (Ans: $\mathbf{3 . 6}$ minutes)
6. Initially, a bacteria culture that grows according to zero-order kinetics contains 1250 bacteria. The count increases to approximately 12,500 bacteria 6 hours later. What is the doubling time $\left(\mathrm{t}_{\mathrm{d}}\right)$ for this bacterium? (Ans: $0.67 \mathbf{h r}$)
7. Repeat problem 6, assuming that $2^{\text {nd }}$ order kinetics governs the bacterial growth. (Ans: $\mathbf{3 . 3 3} \mathbf{~ h r s)}$
8. Provide reaction rate expressions for the shaded species by combining the two methods discussed in class for writing the total rate. Assume that reactions (a-d) are elementary and either uni-, bi-, or termolecular.
a. $\mathrm{O}+\mathrm{O}_{2}+\mathrm{M} \rightarrow \mathrm{O}_{3}+\mathrm{M}$
b. $\mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{C}_{2} \mathrm{H}_{5}$
c. $\mathrm{OH}^{-}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{3}{ }^{-}+\mathrm{H}_{2} \mathrm{O}$
d. $\mathrm{OH}^{-}+\mathrm{CO} \rightarrow \mathrm{CO}_{2}+\mathrm{H}^{-}$

