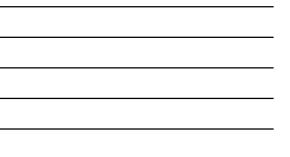

Air Pollution Generation and Control

Chapter #5 Lectures (Part 4)

## Cyclones

- A mechanical gas cleaning device
  - Gas is spun (centrifugal force) to separate particles
- Two types
  - Vane axial
    - A ring of vanes around an inner cylinder imparts the circular motion
  - Involute
    - A tangential gas inlet (rectangular cross-section) blends gradually to the cylinder over a 180° involute


© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)



# Small Involute Cyclones

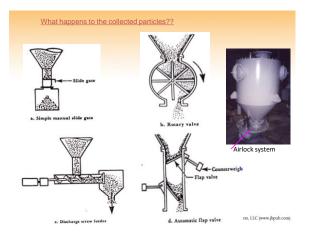






# Large Involute Cyclones



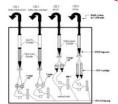



© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

# Cyclones in Series (or Parallel)



Units in series: increased removal efficiency Units in parallel: increased volumetric capacity Q 2009 (ress and Barliett Publishers, LLC (www.lbpub.com)




#### Cyclones are used when:

- Particles are coarse (d<sub>p</sub> > 10 μm) Concentrations are high ( > 2 g/m<sup>3</sup>) Size classification is desired :
- .
- High efficiency is not required

Cyclones are often used to pre-clean

General applications include: Oil refineries to separate oils and gases Cement industry Vacuum cleaners



© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

## Cyclone Design Characteristics

- High efficiency type
  - High pressure drop ( $\Delta P$ )
  - Good collection of small  $d_p$  (< 10  $\mu$ m)
- High throughput type
  - Low pressure drop
  - High flowrate
  - Poor collection of small d<sub>p</sub> (< 10  $\mu$ m)
- Conventional type
  - Intermediate to high efficiency and high throughput

### Efficiency Range of Cyclones

| Particle size range (µm) | Efficiency Percentage |                 |
|--------------------------|-----------------------|-----------------|
|                          | Conventional          | High Efficiency |
| Less than 5              | Less than 50          | 50 - 80         |
| 5 – 20                   | 50 - 80               | 80 – 95         |
| 15 - 40                  | 80 - 95               | 95 – 99         |
| Greater than 40          | 95 - 99               | 95 – 99         |

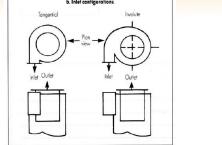
Irrespective of design, removal efficiency of any cyclone drops rapidly below a certain  $d_{\rm p}$ .

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

### Cyclones (Centrifugal Force)

In settling chambers, gravitation force is used to remove large particles ( $d_p > 10 \mu m$ ) from gas streams but is not very effective for smaller particles.

<u>Centrifugal force</u> can be used to achieve larger removal efficiencies for smaller particles.


The gas stream is forced to change its direction, but the particles have **inertia**.

Centrifugal force causes the particles to be transported in a different direction than the gas stream, allowing for their separation and collection.

#### Tangential Inlet and Involute Inlet—A Comparison

- A <u>straight tangential entry</u> creates quite a bit of <u>turbulence</u> which will lead to back mixing and loss of <u>efficiency</u>
- The involute brings the gas in parallel to the outer edge of the cyclone (tangent at that point) and leads it around a spiral for 180° to enter the top section with minimum turbulence

# Tangential Inlet and Involute Inlet—A Comparison

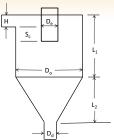


© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com

#### **Operating Problems**

- <u>Erosion</u>: Heavy, hard, sharp-edged particles, in a high concentration, moving at high velocity in the cyclone, continuously scrape against the wall and can erode the metallic surface unless suitable materials are used.
- <u>Corrosion</u>: it is a problem if the cyclone is operating below the condensation point when reactive gases are present in the effluent stream. Best to operate above the dew point.
- <u>Build-up</u>: of dust cake on the cyclone walls, especially around the vortex finder, at the ends of any internal vanes, and opposite the entry can become a severe problem. Frequently occurs with hygroscopic dusts.

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)


## Cyclone Advantages

- Low capital cost
- High efficiency over a broad flow range
- Ability to optimize the design for flowrate
- Simple construction and operation
- Potential for low ΔP resulting in energy savings
- Low maintenance requirements
- No moving parts
- High safety during operation under pressure
- · Continuous disposal of solid particles
- Any material can be used for construction that meets temperature, pressure and corrosion resistant requirements

## Cyclone Disadvantages

- Low collection efficiency for particles below 5
   – 10 μm in diameter
- Equipment is subject to severe abrasive deterioration
- Collection efficiency decreases as particulate loading decreases

#### Involute Cyclone and its Standardized Proportions



| Table 5-6. Standard Cyclone Proportions |                                  |  |
|-----------------------------------------|----------------------------------|--|
| Length of cylinder                      | L <sub>1</sub> = 2D <sub>0</sub> |  |
| Length of cone                          | L <sub>2</sub> = 2D <sub>0</sub> |  |
| Height of entrance                      | $H = D_o/2$                      |  |
| Width of entrance                       | $W = D_o/4$                      |  |
| Diameter of exit cylinder               | $D_e = D_o/2$                    |  |
| Diameter of dust exit                   | $D_d = D_o/4$                    |  |

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

There is interest in determining the particle removal efficiency of an involute cyclone with standardized proportions



 $\begin{array}{l} \mbox{Where:} \\ R_{o} = \mbox{outer radius of cyclone} \\ R_{i} = \mbox{inner radius of cyclone} \\ \mbox{W} = R_{o} - R_{i} = \mbox{width of cyclone's inlet} \\ R^{*} = \mbox{minimum or "critical" radius for which} \\ & a \mbox{ particle of diameter, } d_{p}, \mbox{will just} \\ & \mbox{ reach the outer wall of the} \\ & \mbox{ cyclone and be removed} \\ & \mbox{ from the gas stream.} \end{array}$ 

 $\eta_{d} = \frac{R_o - R^*}{R_o - R_i}$