

Chapter #5 Lectures (Part 3)

Recall: Particle Collection Mechanisms

Mechanical removal of particles:

Inertial Impaction
 Interception

Ó

Diffusion (Brownian motion)

4. Gravitational Settling

Enhancement of these mechanisms can occur

by using external forces such as electrostatic attraction and/or centrifugal forces

) Jones and Bartlett Publishers, LLC (www.jbpub.com)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Particle Collection/Removal Devices

Particulate contaminants are typically removed from industrial gas streams using:

- Settling Chambers (gravitational force)
- Cyclones (centrifugal force)
- Wet Collectors (Brownian motion, interception, and impaction)
- Electrostatic Precipitators (electrostatic force)
- Fabric Filters (Brownian motion, interception, and impaction)

Gravity Settling Chamber

- The simplest and oldest mechanical particle collectors
- Used to remove large particles (d_p > 50 μm)
- Form: long, horizontal, rectangular chambers
- Flow within chambers must be uniform
- Hoppers used to collect settled material
- Two types:
 - Expansion chamber (cheaper, less efficient)
 - Multiple-tray chamber (more expensive and efficient)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Expansion Chamber

- Gas stream velocity significantly reduced as the gas expands in a large chamber
- The velocity reduction allows larger particles to settle out

More Expansion Chamber Images

All particles in a given range of d_p settle here

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Intermediate

Multiple-Tray Chamber

- An expansion chamber with a number of thin, closely-spaced trays
 - Trays cause gas to flow horizontally between them
 - Gas velocity is unchanged
 - Collection efficiency improves, however, since particles have less distance to fall before they are collected
- The overall volume (space) requirement for a multiple-tray chamber is less than for an expansion chamber for the same d_n

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Characteristics of Settling Chambers

Advantages	Disadvantages
No moving parts	Large volume requirement—large footprint
Low capital cost	Low collection efficiency for $d_p < 50 \mu m$
Low operating cost	Trays may warp at high temperatures
Does not require use of additional materials	

What do you think are the most important advantages/disadvantages?

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Settling Chamber Analysis

 d_{p,min} for which 100% removal is achieved can be determined (refer to exp. chamber schematic)

- The time required to fall the distance H equals the time required to travel the distance L (for $\rm d_{p,min100\%}$)
- Thus

$$t = \frac{H}{V_t} = \frac{L}{ug}$$

- Using Figure 5-8, we can relate d_p to V_t :

$$V_{t} = \frac{u_{e}H}{L} = \frac{Q}{LW} = f(d_{p})$$
© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Analysis (2)

• And finally, using Stokes' Law:

$$d_{p,min100\%} = \left(\frac{18\mu Hug}{gL\rho_p}\right)^{1/2}$$

- Note: $d_{p,min100\%}$ decreases as H/L decreases
- Also note: there is fractional removal efficiency for $d_p < d_{p,min100\%}$

Analysis (3)

• Fractional collection efficiency, n_d:

$$\eta_{d} = \frac{V_{t}L}{Hu_{g}} = \frac{V_{t}LW}{Q}$$

• To incorporate the number of trays, *n*, (for a multi-tray chamber):

$$V_t = \frac{Hu_g}{nL} = \frac{Q}{nLW} \quad and$$
$$\eta_d = \frac{nV_tL}{Hu_g} = \frac{nV_tLW}{Q}$$

Example (Gravitational Settling Chamber)

Calculate the collection efficiency of a gravitational settling chamber for 20 μ m diameter particles with density of 1 g/cm³. Total gas flow rate for the chamber is 5 × 10⁴ m³/hr. The carrier gas for the particles is dry air at 298 K and 1 atm. The chamber has 20 shelves that are 10 m long and 10 m wide with vertical shelf spacing of 0.2 m.

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)