EVE 402 Air Pollution Generation and Control

Chapter #5 Lectures (Part 2)

How to Characterize Aerosols

Size

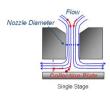
- Monodisperse: All particles are the same size
 Polydisperse: Particles of more than one size
- Concentration
 - Number concentration by counting
 - Mass concentration by weight measurement
- Differential or Continuous Analysis
 - We assume that particle diameters are continuously distributed

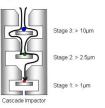
© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Detection/Collection Methods

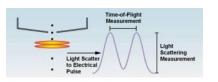
1. Cascade Impactor





Detection/Collection Methods (2)

2. Aerodynamic Particle Sizer (APS)



© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

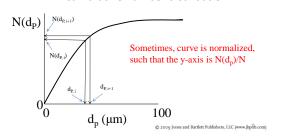
Example data from a cascade impactor

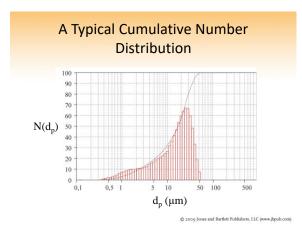
Size Range (µm)	Count (#)	Fraction	Percent (%)	Cumulative Percent (%)	Fraction/size (µm ⁻¹)
0-4	104	0.104	10.4	10.4	0.026
4-6	160	0.16	16.0	26.4	0.08
6-8	161	0.161	16.1	42.5	0.0805
8-9	75	0.075	7.5	50.0	0.075
9-10	67	0.067	6.7	56.7	0.067
10-14	186	0.186	18.6	75.3	0.465
14-16	61	0.61	6.1	81.4	0.0305
16-20	79	0.79	7.9	89.3	0.0197
20-35	103	0.103	10.3	99.6	0.0034
35-50	4	0.004	0.4	100.0	0.0001
> 50	0	0	0	100.0	0
Total	1000		100.0		

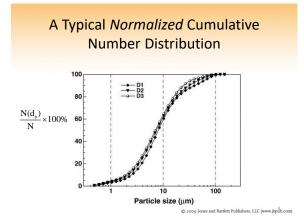
© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

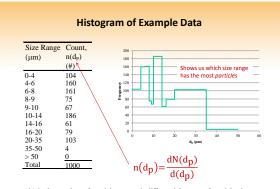
Cumulative Particle Size Distributions

Let: N = total number of particles of all sizes N(d_p) = no. of particles with diam. \leq d_p = cumulative number distribution



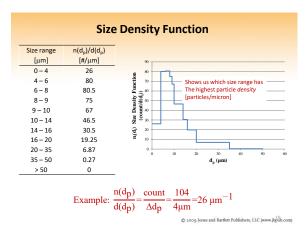






$$\begin{split} n(d_p) \text{ is the number of particles per unit differential range of particle size.} \\ That is, the number of particles per size range <math display="inline">d_p$$
 to $d_p + d(d_p) \\ & \textcircled{0 2000 \text{ Joss and Earlief Publishers, LLC [www.jspib.com]}} \end{split}$



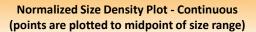


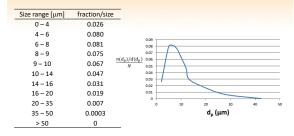


Normalized Size Density Function

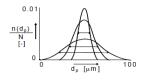
Size range [µm]	fraction/size		0.09							
0 - 4	0.026		0.08		_					
4 - 6	0.080		0.07		4	Shows	us which	n size ra	nge has	the
6-8	0.081		0.06			highest	fractior	of par	ticle der	isity
8-9	0.075	$\frac{n(d_p)/d(d_p)}{d(d_p)}$	0.05							
9-10	0.067	Ν	0.04							
10-14	0.047		0.03	⊢		5				
14-16	0.031		0.02			5				_
16-20	0.019		0.01 ·							
20 - 35	0.007			o	10	20	30	40	50	60
35 - 50	0.0003						d _ρ (μm)			
> 50	0									

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)



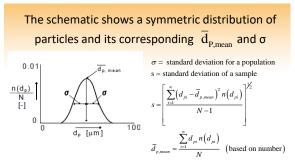


By inspection, what can you say about the Three different size density functions below?



They all have the same ______ d_p They all have different ______

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)



where:

 d_{pi} = characteristic size (diameter) of particles in a given size range $n(d_{pi})$ = number of particles within a characteristic size range O 2009 lones and Burley Publikers, ILC [www.philh.com

Gaussian Size Distribution

• The normal (Gaussian) distribution may be used to model particle size distributions.

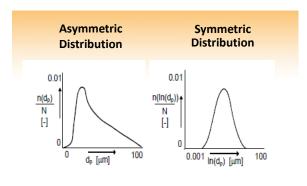
$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right]$$
$$\frac{n(d_p)}{N} = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{1}{2}\left(\frac{d_p - \overline{d}_{p, mean}}{\sigma}\right)^2\right]$$

Gaussian Size Distribution (2)

- Normalized size density functions are often asymmetric
- Symmetry may be regained by using a transformation, such as log(d_p) or ln(d_p)
- The transformation of d_p may provide an equation that better fits the data than the normal distribution

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)



Observations of atmospheric aerosol sizes show mostly log-normal distributions: n(ln(d_n))

$$\frac{n(\ln(d_p))}{N} = \frac{1}{\ln(\sigma_g)\sqrt{2\pi}} \exp\left[-\frac{1}{2} \left(\frac{\ln(d_p) - \ln(\overline{d}_{p,g})}{\ln(\sigma_g)}\right)^2\right]$$

When using a log-normal distribution, there is interest in the

• Geometric mean diameter

$$\overline{\mathbf{d}}_{\mathbf{p},\mathbf{g}} = \exp\left[\frac{\sum_{i=1}^{\infty} n\left(\mathbf{d}_{\mathbf{p}_{i}}\right) ln\left(\mathbf{d}_{\mathbf{p}_{i}}\right)}{N}\right]$$

• Geometric standard deviation

2019/10/9

$$\sigma_{g} = exp\left[\left(\sum_{i=1}^{\infty} n\left(d_{r_{i}}\right) \left(ln\left(d_{p_{i}}\right) - ln\left(\overline{d}_{p,g}\right) \right)^{2} \right)^{V} \right]$$

$$O_{2} \text{ socy fores and Bartlett Publishers, LLC (www.philo.com)}$$

What is the $\bar{d}_{p,q}$?

- In general, the geometric mean indicates the central tendency of a set using the *product* (the arithmetic mean uses the *sum*)
 - Say we have four d_p values [µm]: 4.5, 24.6, 13.2, 19.7 • \bar{d}_p = (4.5+24.6+13.2+19.7)/4 = 15.5 µm
 - $\bar{d}_{p,g} = \sqrt[4]{4.5 \times 24.6 \times 13.2 \times 19.7} = 13.03 \,\mu\text{m}$
- In terms of logarithms, we compute the arithmetic mean of the transformed data and use exponentiation to return to original scale

 $- \bar{d}_{p,g} = exp\left[\frac{1}{N}\sum_{i=1}^{N}\ln(a_i)\right]$

0 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

$\bar{d}_{p,g}$ (logarithms)

• So, from the example data

$$-\bar{d}_{p,g} = \exp\left[\frac{1}{4}(\ln 4.5 + \ln 24.6 + \ln 13.2 + \ln 19.7)\right]$$

 $- \therefore \bar{d}_{p,g} = 13.03 \ \mu m$

 Note...this also works for log₁₀, or any other base

What is the σ_{g} ?

 In terms of logarithms (ln), σ_g is the exponentiated result of the standard deviation of the transformed values

• So, since the transformed data points are: 1.5, 3.2, 2.58, 2.98

```
- s_{trans} = 0.754
• What are the units?
- \sigma_g = exp(0.754) = 2.13
• What are the units?
```

Values for $\overline{d}_{p,g}$ and σ_{g} can be based on mass/area/or number of particles

- Analyze graphically using a log-probability plot
 - Particle diameter is plotted on the log-scale abscissa
 - Cumulative percent mass/area/or number of particles less than the specified diameter is plotted along the ordinate
- If points lie on a straight line, then the distribution is log-normal
- The geometric mass/area/or number mean diameter is the diameter with 50% by mass/area/or number of particles less than the specified diameter

2019/10/9

0 2009 Jones and Bartlett Publishers, LLC (www.jb $\overset{23}{\text{publ.com}}$

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

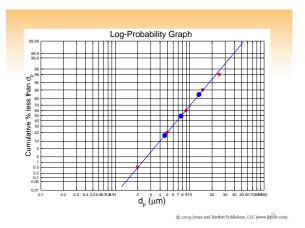
Log-Probability Graph

Data from a cascade impactor						
Size range (µm)	0-2	2-5	5-9	9-15	15-25	>25
Mass (mg)	4.5	179.5	368	276	73.5	18.5

Size range (µm)	Mass fraction (m _j)	Cumulative percent
0-2	0.0049	0.5
2-5	0.195	20.0
5-9	0.4	60.0
9-15	0.3	90.0
15-25	0.08	98.0
>25	0.02	100

Q: Is this a log-normal distribution? If so, what's its $d_{p,g}$? σ_g ?

Get graph paper from: http://www.reliasoft.com/pubs/paper_lognormal.pdf



$$\overline{d}_{p,g} = 50^{th}$$
 percentile $dp = d_{50\%}$

$$\sigma_{\rm g} = {\rm avg}\left(\frac{{\rm d}_{84.1}}{{\rm d}_{50}}, \frac{{\rm d}_{50}}{{\rm d}_{15.9}}\right)$$

Again...graph paper: http://www.reliasoft.com/pubs/paper_lognormal.pdf

0 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)