EVE 402/502 Air Pollution Generation and Control

Lecture #1 (Ch. 1) Effects and Sources of Air Pollutants

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Introduction

- Air pollution is a WASTE...a by-product of how we live our lives
 - Production of goods
 - Transportation
 - Energy generation
- At the root...COMBUSTION

 $\mathsf{Fuel} + \mathsf{O}_2 \xrightarrow{} \mathsf{CO}_2 + \mathsf{H}_2\mathsf{O} + \mathsf{CO} + \mathsf{SO}_2 + \mathsf{NO} + \mathsf{NO}_2 + \mathsf{particles} + \dots$

Pollutants

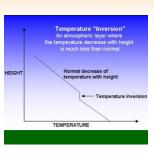
Introduction, continued

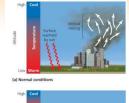
Air pollution is NOT a recent phenomenon

- 1272: King Edward I banned "sea coal" in an effort to clear smoky London air
- 1377-1422: Kings Richard II and Henry V restricted the use of coal
- 1661: A royal pamphlet was published that outlined some air/smoke remedies
- The Great Smoky Mountains were "smoky" before there were people around to see it

(In)famous Air Pollution Episodes

- 1930: Meuse Valley, Belgium (December)
 Dense population, heavily industrialized area
 - High industrial emissions (SO₂) coupled with a "temperature inversion" led to a severe 3-day fog
 Hundreds became ill
 - · 60 "excess" deaths
- 1952: London, UK (December)
 - Similar scenario as above, except many more people
 - Results: 4000 excess deaths in ~15 day period
 - Most of the dead had histories of respiratory and/or cardiac problems ("susceptible" groups)

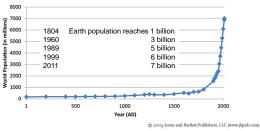

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)


© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

More (in)famous AP Episodes

- 1956: London, UK (January)
 - 1000 excess deaths
 - Clean Air Act passed in Parliament
- Current problems (although not as serious as the aforementioned) in
 - Los Angeles
 - Mexico City: smog can burn your eyes
 - Beijing: 2008 Olympics
 - Houston, Atlanta, Philadelphia, etc.

A Temperature Inversion



General Nature of Air Pollution

• There's a relationship with population

World Population over Time

General Nature of AP, cont.

There is a relationship to GDP

Country		
Dem. Rep. of Congo	180	2
Chile	2500	34
Saudi Arabia	5800	168
France	18300	104
United States	19500	273

• Since 1950, we have consumed more resources than in all of previous history combined

General Nature of AP, cont.

- Four basic assumptions of AP control
 - Air is in the public domain: it is a problem both for those who discharge and those who may suffer
 - AP is an inevitable consequence of modern life: our economic concerns and physical wellbeing conflict
 - Mitigation techniques must not worsen the situation elsewhere

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

- We don't know everything

Definition of Air Pollution

"...the presence in the outdoor and/or indoor atmosphere of one or more contaminants or combinations thereof in such quantities and of such duration as may be or may tend to be injurious to human, plant, or animal life, or property; or which unreasonably interferes with the comfortable enjoyment of life or property or the conduct of business."

Composition of Dry Atmospheric Air

In order to define polluted, what's "clean" (or "normal")?

Substance	Volume %	→79% N ₂ →21% O ₂ Typically used in Engineering Calculation
N_2	78%	
O ₂	20.9%	
Argon	~1%	
CO ₂	0.033%	
Other	Trace amts.	
		2009 Jones and Bartlett Publishers, LLC (www.jbpub.c

Broad Categories of AP

- Ambient air pollution: refers to AP in the outdoor environment (regulatory authority lies within the US EPA)
- *Indoor air pollution*: AP in buildings, homes, cars, planes, etc. (no regulatory authority)
- Occupational air pollution: refers to workplace exposures (OSHA is the regulatory authority)
- Personal exposure: cigarette smoking, etc.

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Expressing Pollutant Concentrations

Concentration on a volumetric basis

 $\boxed{1\text{ppm} = \frac{1 \text{ volume of gaseous pollutant}}{10^6 \text{ volumes air}} = 0.0001\% \text{ by vol.}}$

· Concentration on a mass basis

μg _	micrograms	
m^3	cubic meter	

Volumetric-Mass Relationship

A general expression of concentration

$$\frac{m_{_{pol}}}{V_{_{air}}} = \frac{\rho_{_{pol}}V_{_{pol}}}{V_{_{air}}} = \frac{V_{_{pol}}}{V_{_{air}}} \times \frac{P(MW)_{_{po}}}{RT}$$

- Assuming IGL with P = 1 atm, T = 25°C – MW_{pol} = the pollutant's molecular weight
 - $-R = 0.08208 \text{ atm} \cdot \text{m}^3/\text{kg} \cdot \text{mol} \cdot \text{K}$

$$\frac{\mathrm{m}_{\mathrm{pol}}}{\mathrm{V}_{\mathrm{air}}} \left[\frac{\mathrm{kg}}{\mathrm{m}^{3}}\right] = \frac{\mathrm{V}_{\mathrm{pol}}}{\mathrm{V}_{\mathrm{air}}} \times \frac{(\mathrm{MW})_{\mathrm{pol}}}{24.5}$$

Volume-Mass Relationship, cont.

- Multiplication of LHS by 10⁹ converts mass to μg
- Division by 10^6 converts $(V_{\text{pol}}\!/V_{\text{air}})$ to ppm
- Final result at 25°C and 1 atm:

 $\frac{\mu g}{m^3} = \frac{ppm \times MW_{pol}}{24.5} \times 10^3$

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Examples

- Car exhaust contains 1.5% CO by volume. What is the [CO] in μg/m³ at 25°C and 1 atm?
- The average daily concentration of SO₂ is observed to be 415 μ g/m³ at 25°C and 1 atm at a given location. What is the [SO₂] in ppm?

Air Pollutant Classification

- Anthropogenic (<u>man-made</u>) vs. biogenic (<u>natural</u>)
 - Examples:
- Primary (<u>directly emitted</u>) vs. secondary (<u>formed via reactions of primary pollutants</u>)
 – Examples:
- Particulate vs. gas vs. aerosol – Examples:

Particulate Matter (PM)

- Particulate: dispersed airborne solid and liquid particles
 - Generally, larger than 0.0002 μm in diameter
 - Generally, smaller than 500 μm in diameter
 - The smallest sizes undergo Brownian motion
 - The largest sizes undergo gravitational settling

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

and Bartlett Publishers, LLC (www.jbpub.com

Characteristics of PM

- Visibility reduction
 - Scattering: a ray is deflected from its straight path

- Absorption: light wave energy is "taken up" by matter

PM: Visibility Reduction

• Let the light passing through an incremental distance *dx* be reduced by absorption and scattering by an amount *dl* which is proportional to the intensity *l*

 $dl = -\sigma_{ext} l dx$,

- Where the proportionality constant (σ_{ext}) is called the <u>extinction coefficient</u>
- Integration over the path length from 0 to d gives

$I = I_o exp(-\sigma_{ext} d)$

Where I = the intensity at d and I_o is the original intensity at x = 0 \odot 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

PM: Visibility Reduction (2)

• The extinction coefficient (σ_{ext}) includes the effects of both scattering and absorption

 $\sigma_{\text{ext}} = \sigma_{\text{Rayleigh}} + \sigma_{\text{abs-gas}} + \sigma_{\text{abs-part}} + \sigma_{\text{scat-part}}$

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

- So, ultimately, σ_{ext} is a function of
 - Wavelength (λ) of incident light
 - Concentration of air molecules
 - Concentration of absorbing gases
 - Particle size and shape

PM: Visibility Reduction (3)

- Lower limit of visibility (L_v, a <u>distance</u>) occurs when light intensity is reduced to 2-5% of unattenuated
 - So, with $\rm I/I_{o}$ = 0.02, we can show analytically that

$$L_v = \frac{3.9}{\sigma_{ext}}$$

- Further, we've shown empirically that

$$L_{_{\rm V}} = \frac{1.2 \times 10^3}{C} \qquad \qquad \text{C[}\mu\text{g/m^3], L_{\text{J}}\text{[km]}}$$

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

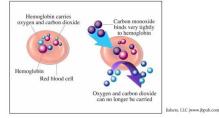
PM: Effects on Materials, Vegetation, and Animals

- Particles will soil surfaces, clothing, and curtains by settling on them
- Particles may corrode metals
- · Particles impact crop yields
- Some particulate contains toxics
 - Fluorosis: ingestion of fluoride-containing PM
 - Arsenic poisoning: ingesting of As-containing PM

PM: Effects on Human Health

- PM poses a very serious health hazard
- · Two mechanisms:
 - The PM may be of a <u>certain size</u> that efficiently penetrates deep lung tissue
 - The PM may be toxic due to <u>physical</u> and/or <u>chemical</u> characteristics
- · Health effects:
 - Upper respiratory infections, cardiac disease, bronchitis, asthma, pneumonia, emphysema, and cancer

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)


© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Carbon Monoxide (CO)

- CO is colorless, odorless, and very <u>stable</u> in atm (2-4 month lifetime)
- Biogenic and anthropogenic sources
- 1-2% annual increase globally over last few decades
- Global background concentration of 50-120 ppb (higher in <u>winter</u>)
- · No harmful effects on plant life (to date)

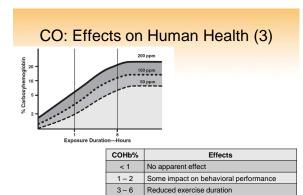
CO: Effects on Human Health

- High [CO] causes <u>physiological</u> and <u>neurological</u> changes and even <u>death</u>
- CO is an asphyxiant

CO: Effects on Human Health (2)

• Exposure to CO leads to equilibrium concentrations of COHb and O₂Hb given by:

$$\frac{\text{COHb}}{\text{O}_2\text{Hb}} = \text{M}\frac{\text{P}_{\text{co}}}{\text{P}_{\text{O}_2}}$$


 Where P_{CO} and P_{O2} are partial pressures of the inhaled gases, and M is 240 for human blood (Hb has an affinity for CO that is 240 times greater than for O₂)

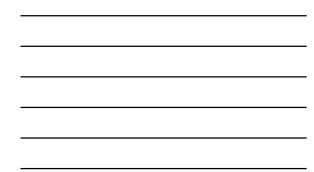
© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Impaired vision, motor performance, hearing

Headaches, dizziness, death (long exp. time)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

7 – 10

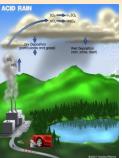

> 10

Sulfur Oxides (SO_x)

- SO₂ and SO₃ are dominant forms in atm.
- SO₂ is colorless and nonflammable; a pungent odor above 3.0 ppm
- Some SO₂ converts to SO₃ in atm – The SO₃ quickly converts to H₂SO₄
- Some SO₂ converts directly to H₂SO₄
- SO_X (gas and particle phase) produce some of the most damaging effects attributable to air pollution

Urban abundance of SO_x aerosol

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com


<section-header><figure><figure>

SO_x: Effects on Visibility and Materials

- Sizeable contribution to visibility reduction (up to 70%, or more)
- High [SO₂] increases paint drying time and decreases surface durability
- SO₂ accelerates metal corrosion, decreases tensile strength of AI, and weakens nylon

SO_x: Acid Deposition

- Acid precipitation from rain, snow, or cloud water droplets, or as solid acidic particles
 - What's a neutral pH?
 - What's "normal" for rain?
 - What's typical for acid rain?

og Jones and Bartlett Publishers, LLC (www.jbpub.cr

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

SO_x: Acid Deposition(2)

• The chemistry is heterogeneous (gaseous SO₂ is adsorbed onto an aqueous droplet)

$$\begin{array}{c} SO_2(g) \leftrightarrow SO_2(aq) \\ SO_2(aq) + H_2 0 \leftrightarrow HSO_3^- + H^+ \\ HSO_3^- \leftrightarrow SO_3^{2-} + H^+ \\ SO_3^{2^-} + H_2 0 \leftrightarrow SO_4^{2^-} + 2H^+ \end{array}$$

- 60-70% of acidity in the eastern US is due to sulfuric acid
- · Species may be carried FAR from source

SO_x: Acid Deposition Effects

- Acidification of natural waters
 - Reproduction in many fish fails with $pH \le 5.5$
 - But natural rainwater has pH ≈ 5.6. What's going on?
 - Trout and salmon especially sensitive
- · Nutrients leached from soil
 - Demineralization reduces crop yields
 - Implicated as a major contributor to the die off of forests

SO_x: Human Health Effects

- Hard to distinguish effects from those of other air pollutants
- Short-term (acute) response is reasonably clear
 - Pungent, suffocating bronchoconstriction at [SO₂] ≥ 5 ppm

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

 Long-term (chronic) response is more difficult to assess

Other Important Pollutants

- Hydrocarbons (PAHs, terpene, isoprene)
 Play a major role in tropospheric O₃ prod.
- Oxides of Nitrogen (NO, NO₂, others)
 Important for O₃, acid deposition
- Photochemical Oxidants (O₃, PAN H₂O₂, others)
 - Secondary pollutants
 - Corrosive (materials), and toxic (health) effects

One more thing...

Never lose sight of the various SOURCES

- Transportation, combustion, industrial
- Volcanoes, forest fires, swamps, bacterial action
- Obviously, different pollutants have different sources
 - And therefore, different control technologies and strategies
- Mexico City News Report

Discussion Questions

- 1. What are the causes of air pollution?
- 2. What are the effects of PM on health?
- 3. What are the effects of gas-phase pollutants on health?
- 4. What are the important non-health effects of air pollution?