EVE 486 Toxicology – Biological Poisons

Biological Poisons

- There are MANY

 - Holly berries, daffodils, oleander, hemlock
 Tiger snake venom, blue-ringed octopus venom, dart frogs
- Purposes
 - Defense
 - Predation
- · Typically much more toxic than man-made chemicals (effective in small amounts)
- · Human utility

 - Physiological research
 Pharmacologic prototypes

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Toxins

- Toxic substances of biological origin
- Categorized based on the organism that produces them:
 - Bacteria
 - Fungi: mycotoxins
 - Algae: phycotoxins
 - Plants: phytotoxins
 - Animals: zootoxins
- Venom: an animal toxin that is produced in a salivary gland and is delivered to another animal through a bite or sting © roop true and farter rulativer, LCC (wex.lpub.com)

LD50 Values of Some Common

A	nin	nai	10	XII	าร	

Species	Route	LD ₅₀ [mg/kg]	Locality	
Scorpions				
Deathstalker	Subcut.	0.25	N. Africa, SW Asia	
Fat Tail	Subcut.	0.32	N. Africa, Middle East	
Arizona Bark	Subcut.	1.12	Arizona, Mexico	
Spiders				
Black Widow	Subcut.	0.9	N. America, Europe	
Brown Recluse	Subcut.	0.48	USA, Mexico	
Funnel Web	Subcut.	??	Australia	
Insects				
Commom bee	Intraven.	6	Wide distribution	
Wasp	Intraven.	2.5	Wide distribution	
Harvester ant	Intraven.	0.12	N. America	
Sea Creatures				
Box Jellyfish	Skin Con.	0.04	Indian, Pacific Oceans	
Lionfish	Intraven.	1.1	All oceans	
Stonefish	Intraven.	0.2	Indian, Pacific Oceans	
Puffer fish	Ingestion	0.008	All oceans	
Snakes				
W. Diamondback	Intraven.	4.2	N. America	
King Cobra	Intraven.	0.35	Asia	
Taipan	Intraven.	0.013	Australia	
Black Mamba	Intraven.	0.25	Africa	
Beaked sea snake	Intraven.	0.02	Indian, Pacific Oceans	

Animal Toxins

Spider Venoms

- Black widow spiders (Lactrodectus spp.)
 - · Venom is neurotoxic
 - Effect: "Latrodectism" (pain, nausea, muscle contractions and cramps)
- Brown recluse spiders (Loxosceles spp.)
 - Venom is cytotoxic and hemolytic
 - Effect: "Loxoscelism" (local and systemic effects associated with necrosis)
- In the US, 5-10 deaths/year

 $\textcircled{\sc 0}$ 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Animal Toxins, cont.

- Scorpions
 - Very painful sting
 - Venom is generally neurotoxic
 - Most species relatively harmless to humans
- Bees and Wasps
 - Moderately painful sting
 - Venom is generally myotoxic (muscular)
 - Minimal toxic effect unless
 - Multiple stings
 - Individual is allergic to venom
 - In US, 50-100 deaths/yr

Animal Toxins, cont.

- Cnidarians (jellyfish, corals, and anemones)
 - Nematocysts (thread-like "tentacles")
 - · Capable of discharge even if animal is dead
 - Box Jellyfish, Chironex Fleckeri
 - · Extremely toxic
 - Excruciating sting can produce shock and drowning
 - · 20-40 deaths/year in Philippines, alone
 - Portuguese Man-of-War, Physalia
 - · Less toxic
 - · Painful sting that leaves welts

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Animal Toxins, cont.

Mollusks

- Blue-ringed octopus, Hapalochlaena lunulata and Hapalochlaena maculosa
 - · Capable of killing a human (painlessly) within 5 minutes
 - · No known antidote
- Bivalve mollusks: consumption may lead to
 - · Amnesic shellfish poisoning
 - Diarrheic shellfish poisoning
 - Neurotoxic shellfish poisoning
 - Paralytic shellfish poisoning
- Cone snails: ~two dozen humans confirmed killed

Animal Toxins, cont.

Amphibians

- Poison dart frogs, dendrobates and phyllobates
 - >100 toxins have been identified in secretions
 - Weaponized by native Central/South Americans
 - · Secretions may also have medicinal value
- "Frog licking"
 - · An hallucenogenic effect of the toxin
 - MANY hospitalizations

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Animal Toxins, cont.

Reptiles

- Venomous snakes
 - Venom may be proteolytic, hemotoxic, neurotoxic, cardiotoxic and/or cytotoxic
 - · Approximately 125,000 deaths annually
 - The Russell's viper kills more than any other (moderately toxic venom; although irritable and wide-ranging)
 - Inland Taipan has most toxic venom (very, VERY shy,
 - however; no deaths ever documented)
 - Most *inject* venom; a few *spit*

Animal Toxins, cont.

Lizards

- Gila Monster, Mexican Bearded Lizard
 - SW USA and Mexico
 - Painful bite with neurotoxic or hemotoxic venom
 - Few (if any) deaths documented
- Monitor lizards, Komodo dragons
 - Likely "some" venom (debatable)
 - Komodo dragon has septic bacteria in saliva
 - Few human deaths recorded; most as a result of blood loss and/or shock

Bacterial Toxins

- Botulinum Toxin
 - Neurotoxic protein that is produced under anaerobic conditions by the bacterium Clostridium botulinum
 - LD₅₀: approximately 0.25 1 ng/kg
 - Likely the most acutely toxic substance known

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

- Clostridium spores are ubiquitously found in soil globally
- Used in very small amounts both as a cosmetic treatment (Botox) and to treat painful muscle spasms (Dysport)

Comparison of the Toxicity of Botulinum Toxin with Several Other Chemical Substances

Toxin	LD ₅₀ (µg/kg)	Molecular Weight
Botulinum toxin	0.00025	150,000
Batrachotoxin (amphibian dart poison)	2	538
Tetrodotoxin (puffer fish poison)	9	319
Sodium cyanide	10,000	65

Bacterial Toxins, cont'd

- Tetanus Toxin
 - Described by Hippocrates 2500 years ago
 - Neuromuscular toxin produced by the bacterium *Clostridium tetani*
 - LD₅₀: approximately 2 ng/kg
 - Introduced into the body through skin lacerations, abrasions, and occasionally from body piercing or tattooing

Fungal Toxins

Mushroom Toxins

Food processing (cooking, freezing, etc) will not "detoxify"

- LD₅₀

- Death cap: 0.1 mg/kg
 Psilocybins: 285 mg/kg
- four categories of toxic effect based on the primary toxicity
 - Gastrointestinal Effects
 - Disulfiram-Like Effects (anxiety, high BP)
 - Neurotoxic Effects
 - Cytotoxic Effects

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Algal Toxins

- Cyanobacteria commonly known as bluegreen algae.
 - Primitive photosynthetic organisms
 - Approx. a dozen are toxic
 - Some of these are responsible for "swimmers itch"
 - Others linked to liver cancer
 - Still others produce a very dangerous neurotoxin
- Other algal bacteria (eg. red tide) associated with massive fish kills and shellfish

contamination

Higher Plant Toxins

- Many higher plants produce harmful substances that can produce injury and death if ingested
- Toxins are present in fruit, vegetable, garden, outdoor ornamental, and wild plants
- Plant toxins can be classified based on their general chemical structure:
 - Alkaloids (e.g., Yew, Poison Hemlock, Nightshade, Jimsonweed)
 - Proteins and amino acids (e.g., Castor bean)
 - Glycosides (e.g., Lily of the Valley, Foxglove, Oleander)
 Oxalates (e.g., Philodendron, Dieffenbachia, Rhubarb)
 - Oxalates (e.g., Philodendron, Diettenbachia, Rhubarb)
 Phenols, resins, and volatile oils (e.g., Poison Ivy, Poison Oak,
 - Poison Sumac, Rhododendrons)
 - Phototoxins (e.g., St. John's wort)

© 2009 Jones and Bartlett Publishers, LLC (www.jbpub.com)

Conclusion

- Biological poisons are everywhere
- Many are just as dangerous (or much more so) than any chemical that's ever been produced
- They're evolving...