EVE 491/591
Toxicology

Lecture #9
1. Haiti: No update today…
2. Chemical-induced mutagenesis
3. Exam #1 Review

DNA and Mutations

- **Mutation**: a permanent change in the DNA
 - Mutagenesis – the process by which a mutation occurs
- **DNA**: our blueprint; it carries the genetic information that makes us unique
 - Human DNA is packaged in 23 pairs of chromosomes
 - Each chromosome is composed of a DNA molecule that is complexed with numerous proteins.
 - Regulates the enzymes that are critical for biotransformation of toxins (recall Lecture #8)
 - Must be able to replicate and maintain its integrity from replication to replication.

DNA Composition
DNA and Mutations

- Four nucleotides (structural DNA molecules):
 - Adenine (A)
 - Thymine (T)
 - Guanine (G)
 - Cytosine (C)
- Nucleotides exist in specific pairs ("base pairs")
 - A/T and G/C
- Incorrect base pairing may result in the alteration of information; normal physiology interrupted
 - Examples:
 - An altered enzyme (metabolic deficiency)
 - An abnormal protein (decreased muscular/skeletal function)

DNA and Mutations

- Damage to DNA can be:
 - Spontaneous (a replication "mistake")
 - The result of environmental exposures
- Mutated DNA can be:
 - Recognized
 - Repaired
- DNA is:
 - Perhaps the only biological macromolecule that can be repaired

Mutations

- Mutations may be:
 - Induced as a result of exposure of the DNA to environmental mutagens
 - Spontaneous as a result of "normal" cellular processes
 - Acquired (i.e., somatic) some time during the life of an individual; usually not passed to offspring
 - Hereditary (i.e., germline) acquired from a "parent" and can be present in all the cells of the offspring
Mutations and Apoptosis

- Recall *apoptosis*: planned or programmed cell death
 - It is a normal process that occurs
 - during embryological development
 - as part of normal cellular replacement
 - in response to physical, biological, or chemical stressors
 - Cell turnover occurs without necrosis and inflammation
 - Apoptosis is also an important way that genetically altered cells can be removed from the body if DNA repair does not work/occur
Mutations and Apoptosis

• The triggering of apoptosis is complex
 – Involves the cell receiving chemical messages
to “turn on” those genes involved in the self-
destruction process
• If these genes become mutated and
apoptosis is compromised, then the cell is
at greater risk of becoming one that may
transform into a cancerous cell.

Tests for DNA Damage and
Mutagenicity

• A number of toxicological tests can
evaluate the effects of a chemical agent as
being deleterious to DNA:
 – the Ames test (a biological assay)
 – tests for chromosome aberrations (e.g.,
amniocentesis)
 – exchanges in populations of proliferating cells
 – DNA repair studies
 – others that detect “changes” in the DNA.

Mutagen ≠ Carcinogen

<table>
<thead>
<tr>
<th>Known Human Carcinogens</th>
<th>Mutagens</th>
<th>Suspected Human Carcinogens</th>
<th>Mutagens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxins</td>
<td>Acrylamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arsenic and arsenic compounds</td>
<td>Benz(a)anthracene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asbestos</td>
<td>Benz(a)pyrene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anilines</td>
<td>Cerulene</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzene</td>
<td>Chloroform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benzenes</td>
<td>Ethylene dibromide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadmium compounds</td>
<td>Quinol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium (VI) compounds</td>
<td>Lead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic phosphates</td>
<td>Spermen 7,8 oxide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diethylstilbestrol</td>
<td>Tamoxifen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethylene oxide</td>
<td>Benzofuran</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Tris(2,3-diaminopropyl) phosphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallium arsenate</td>
<td>Vinyl chloride</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vinyl chloride</td>
<td>Vinyl fluoride</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples of Chemical Mutagens

- Some chemical mutagens directly react to disrupt the base pairing within the DNA macromolecule.
 - Nitrous acid (N₂O, “laughing gas”) can deaminate (remove the amino group) certain bases.
 - Other chemicals such as methyl or ethyl methanesulfonate, mustard gas, and nitrosoguanidine, can add methyl or ethyl groups onto the bases.

Exam #1 Topical Review

- Chapter 1
 - What is toxicology?
 - Toxicant vs. toxin vs. poison vs. xenobiotic
 - Toxicology in antiquity
 - Dose-response concept
- Chapter 2
 - Atoms, elements, compounds
 - Within and foreign to the body
 - Mixtures, suspensions, and aerosols

Exam #1 Topical Review (2)

- Chapter 2, continued
 - Physical properties of chemicals
 - pH, solubility, octanol-to-water partition coefficient, boiling point, melting point, vapor pressure…
- Chapter 3
 - Manifestations and adverse effects of toxicity
 - Very minor → necrosis → death
 - Factors that modify toxicity
 - Age, gender, disease, etc.
Exam #1 Topical Review (3)

- Chapter 4
 - Biological poisons
 - Bacteria, fungi, algae, plants, animals
 - Venom vs. poison
 - Chapter 5
 - Fate of pollutants and ecotoxicology
 - DDT
 - Positive and negative attributes
 - Organic mercury

Exam #1 Topical Review (4)

- Chapter 5, continued
 - Pollutant vs. contaminant
 - Ecosystems and compartments
 - Atmosphere, hydrosphere, biosphere, soils
 - Toxicity in a population
 - Chapter 6
 - Dose-response
 - The fundamental principle of toxicology
 - Doses
 - Administered, absorbed, internal, delivered

Exam #1 Topical Review (5)

- Chapter 6, continued
 - Effect levels and dose-response curves
 - NOAEL, LOAEL, threshold, LD_{50}
 - Slope, potency
 - Individual responses to a dose
 - Hyporesponsive, hyperresponsive
 - Body weight standardization
 - Toxicity rating
 - Dose of an inhaled aerosol
Exam #1 Topical Review (6)

• Chapter 7
 – Toxicant entry into the body
 • Barriers to absorption
 – Respiratory system
 » Rapid absorption and quick distribution
 – Digestive system
 » Liver is key
 – Skin
 » Vulnerable to lipophilic chemicals
 – Other routes
 » Intravenous, intramuscular,
 – Disposition modeling

Exam #1 Topical Review (7)

• Chapters 8 and 9
 – Toxicant distribution
 • Compartments: plasma, interstitial, intercellular
 – Toxicant storage
 • Fat, bones
 • Liver/kidneys – particularly efficient storage
 – Toxicant elimination
 • Renal, fecal, pulmonary, others
 – Toxicant biotransformation (i.e., metabolism)
 • Bioaccumulation, bioavailability, bioconcentration
 • Key: enzymes