
Software engineering: a quality
management perspective

John McManus
University of Lincoln, Lincoln, UK, and

Trevor Wood-Harper
University of Manchester, Manchester, UK

Abstract

Purpose – The purpose of this paper is to examine the concept of quality related to the context of
software development using the ISO, TickIT and CMM frameworks. The paper also seeks to stress the
fact that the different perspectives of those involved in software development will influence how
quality is seen and measured. In the context of software engineering projects, quality takes on a broad
meaning that refers not only to the way in which companies manage software engineering projects,
but also to the software development process itself.

Design/methodology/approach – The approach and methodology adopted for this paper were a
review of the literature and best practice in software engineering. It is argued that users of software
systems are more interested in how easy the software is to use than in the underlying application code
that is used to generate the system. Using the body of knowledge that is software quality the basic
characteristics of software quality are described and compared in terms of quality standards such as
ISO, TickIT and CMM. Each of these standards is decomposed further in order to clarify its usefulness.

Findings – The findings in the paper suggest that, whilst there are many differences in the quality
standards used, there are a number of similar characteristics. In essence the underlying philosophies of
ISO and CMM have at the core the same goals. Some academics see CMM as being technically
over-engineered; a CMM-compliant quality system is in many respects far in advance of ISO.

Research limitations/implications – This paper helps define the strengths and weaknesses
within ISO, TickIT and CMM from a software engineering practitioner perspective.

Practical implications – The paper shows that software engineers need to pay more attention to
the performance and conformance issues in software projects and to be proactive rather than reactive
to quality issues.

Originality/value – It may be argued that the importance of this paper lies in the assertion that
those engaged in the software engineering are in need of a multi-perspective view on quality and, with
that in mind, this paper should appeal to practitioners and members of the academic community with
an interest in software quality.

Keywords Quality, ISO 9000 series, Quality standards

Paper type Conceptual paper

Introduction
According to Juran (1988), 90 per cent of all problems in companies are systematic and
beyond the positive influence of staff. Unfortunately, these problems also include
issues related to quality. This means that one of the greatest challenges faced by
project managers and software professionals alike is to get the process right first time.
In turn, this means initiating a rigorous quality regime, which is both defined and
measurable. A widely used definition of quality has been supplied by the International
Organisation for Standardization (ISO8042, 1988)[1]: “The totality of features and
characteristics of a product or service that bear on its ability to satisfy specified or

The current issue and full text archive of this journal is available at

www.emeraldinsight.com/0954-478X.htm

A quality
management

perspective

315

The TQM Magazine
Vol. 19 No. 4, 2007

pp. 315-327
q Emerald Group Publishing Limited

0954-478X
DOI 10.1108/09544780710756223

www.emeraldinsight.com/0954-478X.htm


implied needs”. This view of quality has come to dominate the quality movement in
many software companies. Software professionals generally acknowledge that the
quality of a product (or software system) is very much influenced by the quality of the
processes used to build it. This means in order to build high quality software systems,
it is necessary to have high quality processes and people committed to quality (Crosby,
1979).

It is also recognized (Gillies, 1996; and McManus, 2000) that software quality has its
own peculiarities. Take the following as an example: in 2002, I arranged a workshop
for a specialist group of software developers. Those who attended were asked “why
software quality was different from other types of quality”. It was suggested that each
type of product made had its own quality demands but that software was particularly
problematical for the following reasons:

. Software has no physical existence.

. The lack of knowledge of client needs at the start.

. The change of client needs over time.

. The rapid rate of change in both hardware and software.

. The high expectations of customers, particularly with respect to adaptability.

Barker (1992), his observations on quality was that the quality is by large motivated by
an individuals expectations and perceived value. Barker’s point is that people
determine quality, not just procedures, tools or systems. After all, it is people that
define the problems and specify the solutions.

Quality concepts
Software quality may be described as a paradigm that comprises several concepts
(McManus, 2000). The first of these concepts relates to defining the software process to
be improved. Defining the process means that all the activities to be performed have to
be clearly stated, including the order in which they are to be performed and when they
are considered complete. This is normally achieved by expressing exit criteria. The
second concept relates to using software processes – to improve a process it needs to
be used on many projects. Improvement comes with experience. When the same
process is used over different projects, it is always possible to find ways in which the
process can be improved. Such improvements are usually small and relatively easy to
implement. Over time, such small improvements lead to significant savings and have a
positive financial benefit. The third concept is that of metrics, which should be
collected to determine if changes incorporated into the process, are really
improvements. If so, there is a need to quantify the improvements noted.
Measurement is a fundamental aspect of quality, reflected in the proverb: what gets
measured gets managed; and what gets managed gets improved. Flood (1993)
emphasizes the importance of this by commenting that: “. . . measurement is crucial in
problem solving. Measurement specifications are the basic parameters by which
intervention is guided. The choice of specification is therefore a crucial one”.

Much of the published literature cites a set of either four or five core metrics for
example, Khoshgoftaar and Seliya (2002), and Rangarajan et al. (2001). Whilst the
names and nature of these metrics varies the data elements commonly identified within

TQM
19,4

316



each of the attributes are usually related as shown in Table I. The measures in this
table are not the only ones that can be used to describe software products and
processes, but they represent a starting point and are practical measures that produce
useful information. What is more, they are measures that the project manager should
be able to define in ways that promote consistent use. The measures stated in Table I
should be accompanied by checklists that an individual project manager can use to
specify and obtain supporting data to address management issues that are important
to the project organisation.

Qualifying and quantifying software quality
Apart from aesthetic appreciation of quality products, our purpose in examining
quality is not only to improve the software process but also to facilitate
decision-making. One example of these decisions is in the choice of software tools,
where there are several applications that might meet requirements. Another example is
the decision of whether to accept, and to pay for, a product that claims to meet a
particular need. Many software engineering project managers are often concerned with
the issue of quality versus price, that is, what quality is available for a given price, or
how much extra better quality would cost. Consequently, another example is in
deciding what investment tradeoffs are worth making in order to improve the quality
of a given software system or product. In many cases, what we really want to do is
predict what our own level of satisfaction with the software will be, before we have had
the chance to exercise the software extensively in a particular context (Gentleman,
1996). This comes up both when the software is unfamiliar to us, and when it is not yet
complete.

Software quality is often defined in terms of fitness of the product for its purpose.
Different people however, have different purposes for the same software. A casual user
is probably more concerned about ease of learning and about robustness against

Name of
metric Potential definitions Characteristics addressed

Size Counts of physical source lines of code (SLOC) Size, progress, reuse, rework
Function points or feature points Size, progress, reuse, rework

Effort Number of staff hours expended monthly Effort, cost, rework, resource
allocations

Software
quality

Total number of errors opened/closed Quality, readiness for delivery,
improvement trends, rework

Number of errors opened/closed since last report Quality, readiness for delivery,
improvement trends, rework

Type of error (testing, action item, document
comment)

Quality, readiness for delivery,
improvement trends, rework

Classification and priority Quality, readiness for delivery,
improvement trends, rework

Product in which error was found Quality, readiness for delivery,
improvement trends, rework

Rework Number of open software change orders
Number of closed software change orders
Total number of software change orders

Table I.
Core metrics

A quality
management

perspective

317



misuse rather than efficiency. On the other hand, a system integrator planning to
incorporate the software into some larger system might be more concerned about
failure detection and recovery than ease of installation. The point being made is that
quality is many-sided, and the importance of the different facets changes with the
context, even for the same person at different points in time. As an example, most users
would agree that they want secure software, that is, software free from defects,
including viruses. Users want applications that provide safe manipulation of data,
meaning that the user understands when data is changing due to the actions of the
software. However, the consequences of providing absolute software security may
cause the product to be deemed less attractive (i.e. usable) to one class of user versus
another class of user. The common “are you sure you want to . . . ” prompt is source of
much derision for the “sophisticated” user but the neophyte user can take great comfort
from this extra little bit of security. This may seem like a trivial point, but it is a simple
example of how quality standards should be judged within the context of the user
population.

Software quality characteristics and requirements
Many of the above attributes are explicit in various quality standards. As an example,
the International Standard ISO/IEC 9126[2] offers a model that lists six characteristics:
functionality, reliability, efficiency, usability, portability and maintainability. This
decomposition reflects the viewpoint of users and introduces the concept of quality in
use: users are mainly interested in using the software product, and evaluate software
mostly from the viewpoint of the performance and the service it provides, rather than
on the basis of internal aspects or the development process.

Information system requirements are usually categorized as functional and
non-functional. As functional requirements address what the software can do, while
non-functional requirements are concerned with the overall qualities of the system. The
attributes discussed previously are of a non-functional nature. In carrying out system
development projects, a number of problems have been identified with non-functional
requirements to which the project manager should pay attention (Kontonya and
Sommerville, 1998):

. Some non-functional requirements are related to a design solution that is
unknown at the requirement stage.

. Some non-functional requirements are highly subjective, especially those
associated with human engineering.

. Non-functional requirements have great diversity.

. Non-functional requirements and functional requirements are related methods
that separate them out and make it difficult to see the correspondence between
them.

. Non-functional requirements tend to conflict and therefore need to be treated as
tradeoffs.

Many of the issues listed above can be seen in structured methods, such as SSADM[3],
which places great emphasis on capturing functional requirements, supported by
techniques such as data flow diagramming, data modelling, and a requirements

TQM
19,4

318



catalogue. Although non-functional requirements are dealt with in SSADM there is no
systematic approach to capturing them, no method support, and no mechanism for
trading off conflicts between them.

Software quality metrics
Not all these software characteristics have equal weighting with respect to metrics.
Watts (1987), for example, identified some 40 individual software metrics. Some 34 of
these metrics are associated with the criteria of Maintainability (18), Reliability (12) and
Usability (4). This uneven distribution of metrics seems arbitrary and calls into
question the validity of any given metric. As an example, complexity is used as a
handle on both reliability and maintainability, and 13 measures are described as based
upon complexity. According to Bevan (1997), in order to specify or measure quality in
use, it is necessary to decompose effectiveness, efficiency and satisfaction and the
components of the context of use into sub-components with measurable and verifiable
attributes. Measures of effectiveness relate the goals, or sub-goals, of the user to the
accuracy and completeness with which the goals are achieved. In contrast, measures of
efficiency relate the level of effectiveness achieved to the expenditure of resources.
Measures of satisfaction describe the comfort and acceptability of the use of the
product.

Another ISO standard, ISO 9241-11 (1998)[4], explains how quality in use can be
measured in terms of user performance and satisfaction by the extent to which the
intended goals of the user are achieved. This standard includes the resources that have
to be expended to achieve the stated and intended goals, and the extent to which the
user finds the use of the product acceptable. Measures of user performance and
satisfaction assess the quality in use of a product in the particular context of use
provided by the rest of the working environment.

Quality management frameworks
An attempt to put metrics on a systematic level has been made by the European
METKIT project (Fenton, 1991). The use of metrics to measure criteria is part of an
overall framework that includes quality control and assurance, quality models,
reliability models, and performance evaluation. Over the years, a number of quality
frameworks have been developed to enable companies (including suppliers of software
services) to measure and improve their product offerings to customers (Sanders and
Curran, 1994). At an organisation level the most widely adopted are ISO 9000 (and
TickIT at the individual project level) and the Capability Maturity Model (CMM).

The ISO 9000 framework
The International Organisation for Standardization’s (ISO) 9000 is a series of quality
assurance standards with application for any business, whether in manufacturing,
service, retail, or government, in producing a product or service. Popular in Europe,
ISO 9000 is rapidly taking hold in the USA and around the globe. Some 60 countries,
including the USA, Canada, Japan, and the members of the European Community have
adopted ISO 9000 series standards. Table II lists the components of ISO 9000. As
shown by the table, the ISO 9000 framework is a deep, vertical quality system. That
means that it creates a system that tracks and controls a consistent set of factors

A quality
management

perspective

319



involved in quality and service to the customer. ISO 9001 is applicable in situations in
which there is a substantial element of design. In situations in which design is
predefined then ISO 9002 provides a focus on production. Where there is little or no
production, then ISO 9003 is applicable. The ISO 9000 standard family requires that
whatever process is chosen for development should be understood and documented
and should be monitored to ensure it is actually used.

Companies using this framework should have gone through a three-tier
accreditation process that involves self-assessment, customer assessment and a third
party assessment by an independent standards body. ISO 9000 is a powerful incentive
for companies to get their quality procedures right. Accreditation is a powerful
evidence of this fact. From the information contained in Table II it is clear that ISO
9000 is intended to be generic so that it can serve a broad range of companies.
However, ISO 9001 is intended for applications where there is a significant design
element. Since most software applications require significant design input, ISO 9001 is
generally the standard applied within the software development industry (McManus,
2000).

Acceptance
The primary purpose of applying the ISO 9000 framework is the confidence it will
afford prospective clients, management, and development personnel that the company
system for managing software quality is efficient, effective and measurable. According
to Gillies (1996), however, one of the biggest barriers to acceptance of ISO (particularly
ISO 9001) amongst information technology practitioners is its generic nature and its
origins as a manufacturing standard. Although ISO 9001 has been applied in many
service industries, information technology people still feel it is inappropriate and
difficult to apply (Shelley, 1994, and McManus, 2004). The response to this from the
standards bodies is to issue notes for guidance on the application of the standard to

Standard Description

ISO 9000 Quality management and quality assurance standards – Guidelines for selection
and use (1987)

ISO 9000-9001 Revision of ISO 9000 (1991)
ISO 9000-9002 Guidelines for the application of ISO 9001, ISO 9002 and ISO 9003 (1991)
ISO 9000-9003 Guidelines for the application of ISO 9001 to the development, supply and

maintenance of software (1991)
ISO 9001 Quality systems – Model for quality assurance in design/development,

production, installation and servicing (1987)
A more detailed standard, which covers design, development, production,
installation, and servicing, this applies to the software industry

ISO 9002 Quality systems – Model for quality assurance in production and installation
(1987)
Assesses the production and installation processes

ISO 9003 Quality systems – Model for quality assurance in final inspection and test (1987)
Evaluates the final inspection and test phase

ISO 9004 Quality management and quality system elements – Guidelines (1987)
Defines the 20 fundamental quality system concepts included in the three models

Table II.
Components of ISO 9000

TQM
19,4

320



software development (an example of such guidance was given in Table II). It should
be stressed that these do not supersede the standard, but rather amplify its contents
with the aim of explaining how the standard should be applied in a software context.

The UK TickIT system
In 1991 the British Standards Institute of the United Kingdom (BSI-UK)
introduced TickIT into the quality vocabulary. TickIT uses the checklist
approach to gather detailed information on quality related processes. The aim of
the TickIT system is to assist the take-up of ISO 9001 by the information
technology sector and ensure that suppliers, purchasers and assessors have an
overlapping understanding of the requirements in the IT sector. TickIT (1992), is
a certification scheme developed to apply ISO 9000, but with the advantage of
having been tuned to deal with special requirements of software development. Its
main principles and objectives are:

. The interpretation of ISO 9001 for the information technology sector;

. The need to ensure continuing conformity for certified suppliers;

. The necessity to perform assessments with experienced and skilled assessors as
witnessed by their ability to satisfy examiners; and

. The benefit of accredited training and examination for entrants on the assessor
register.

The TickIT Guide emphasizes the establishment of a “delivery chain” from supplier to
customer by means of a quality management system, which is documented,
implemented and audited. The TickIT guide includes the following information:

. Purchaser’s guide.

. Supplier’s guide.

. Auditor’s guide.

The Supplier’s guide is aimed at software sector companies requiring ISO 9001
certification and also includes guidance on the standard’s application to support and
service activities. The TickIT guide provides background to the TickIT scheme,
including its origins and objectives, how to implement a quality system and the
expected structure and content relevant to software activities.

Independent assessment of a company’s quality system against ISO 9001 provides
confirmation that it has achieved a base line level of performance for its quality-related
processes and practices. In the UK, all recognized (accredited) certification bodies are
required to perform an ISO 9001 assessment in the software sector under the TickIT
scheme, which ensures the use of trained and experienced IT auditors and recognizes
the guidance provided by ISO 9000-9003 (1997) and The TickIT Guide.

Maximizing the benefits from TickIT
Although generally viewed as a certification scheme, this is not its primary purpose.
The main objectives are to stimulate information technology companies to think about
how they can benefit from a quality system and how quality performance may be
achieved.

A quality
management

perspective

321



Certification is an end process, which seeks to confirm that whatever the
organisation declares as necessary to their quality system is put into use and is
effective. In doing so, certification assures that the appropriate parts of the quality
system standard are addressed satisfactorily. The quality system provides a means of
ensuring that quality is delivered. It determines how requirements are processed as
input and how these are transformed into products and services. By its presence or
absence, the quality system has a direct influence on the quality of product and service.
Although, it is easy to measure the effectiveness of such programmes in terms of the
number of firms achieving certification, it is sometimes less easy to quantify the overall
effect upon software quality. ISO and TickIT share a common goal with quality. Each
is driven by similar concerns and intuitively correlated.

The capability maturity model
The Software Engineering’s Institute’s (SEI) Capability Maturity Model (CMM) has
evolved to focus on product quality through a maturity framework that includes five
basic steps (Paulk, 1993). Like ISO 9000, these steps must have full management
sanction and commitment to:

(1) Establish basic management control.

(2) Set quality standards.

(3) Define the process.

(4) Measure and evaluate.

(5) Institute continuous process improvement.

The CMM is a five-level model that attempts to quantify a software organization’s
capability to constantly and predictably produce high-quality software products. The
model is designed so that capabilities at lower stages provide progressively stronger
foundations for higher stages. Each development stage or maturity level distinguishes
an organisation’s software capability. For each maturity level there are associated key
process areas (KPAs). The KPAs identify the requirements for achieving each maturity
level. Level 1 does not include KPAs since it is the starting point. Table III shows the
maturity levels and their associated KPAs (McManus, 1999a).

In essence, each of the maturity levels outlined in Table III is a well-defined step
towards achieving a mature software process. Each maturity level provides a layer in
the foundation for continuous process improvement. Each level comprises a set of
goals that, when satisfied, will stabilize an important component of the software
process. Achieving each level of the maturity framework establishes a different
component in the software process, resulting in an increase in the process capability of
the organisation. What is important here is the organisation’s understanding of the
level of commitment and focus required for achieving levels of maturity. This
commitment must be supported and encouraged by both managers, and software
professionals. Otherwise, the ability to realize process maturity goals will be sporadic
at best and probably unattainable. Those characteristics identified with immature and
mature companies are summarized in Table IV.

TQM
19,4

322



Key process areas
A KPA contains the goals that must be reached in order to improve a software
process. A KPA is said to be satisfied when procedures are in place to reach the
corresponding goals. These key indicators offer an insight into whether the goals
have been satisfied. When an organisation collectively performs the activities

SEI CMM definition KPAs

Initial
The processes are special and mostly defined.
Success depends upon the individual effort

None

Repeatable
Basic project management processes to track cost,
schedule and functionality

Requirements management
Software project planning

Tools are in place to repeat success achieved on
analogous programmes

Software project tracking and oversight
Software subcontract management
Software quality assurance
Software configuration management

Defined
The software process is organisation-wide and is
employed by both management and engineering.
The process is documented, standardized and
integrated

Organisation process focused
Organisation process definition
Training programme
Integrated software management
Software product engineering
Inter-group coordination
Peer reviews

Managed
The detailed measures of the software process are
collected, managed, quantified, understood and
controlled

Quantitative process management
Software quality management

Optimized
The software process continuously improves by
quantified feedback from the process and testing
new and creative ideas and technologies

Defect prevention
Technology change management
Process change management

Table III.
CMM level framework

Immature Mature

Over budget Proactive disciplined/consistent
Late delivery Defined processes
Undefined processes Defined roles
Reactive Consistent monitoring
Crisis management Predictive results
Poor quality On time/within budget
Overworked/confused staff Enabled staff
Unsatisfied customers Satisfied customers

Good communications
Processes institutionalized
Information systems viewed as strategic

Table IV.
Characteristics of mature
and immature companies

A quality
management

perspective

323



defined by the KPAs, it can achieve goals considered important for enhancing
process capability (McManus, 1999b).

A software organisation can only claim to have reached a given maturity once all
corresponding KPAs are satisfied.

CMM assessments
The CMM provides both internal and external assessments. Key indicators form the
basis for the Software Engineering Institute’s maturity questionnaire used to assess
the capability of software companies’ internal processes. This assessment
questionnaire contains 120 questions, where repeatable and defined levels contain
about 40 questions each and managed and optimized levels contain about 20 questions
each. Furthermore, a profile template is used which lists each KPA, such that they can
be checked as not satisfied, partially satisfied, or fully satisfied. As stated earlier, an
organisation maturity level is set at the highest level at which it satisfies all KPAs.

In essence, CMM’s capability evaluation has the same objective as ISO 9000s third
party audits. Both have been developed to check the overall capability of a software
organisation to produce software in timely, repeatable fashion. The only difference is
that in a CMM capability evaluation, a software organisation is ranked according to the
five levels, and in an ISO 9000 audit, a software organisation is checked to see that it
follows a given set of standards. Although some quality managers see the CMM as
technically over-engineered, a CMM-compliant quality system is in many respects
much more advanced than an ISO 9000-compliant system. ISO 9000 establishes a
minimum quality programmes for a software organisation. The CMM establishes a
continuous improvement focus. Whereas ISO 9000 deals with issues of quality control
and quality assurance, the CMM talks about the maturity of the process. Table V maps
the relationship between CMM and ISO 9001.

Conclusion
In conclusion it is generally accepted that higher CMM levels lead to better quality
software products and therefore a better company reputation. CMM compliance may
also change the manner in which a company interacts with its customers because there
are stringent requirements for maintaining a high maturity level. Highly rated
companies are more adept at handling quick demands by the customer. Fortunately,
compliance leads to higher quality software at lower cost (Budlong and Peterson, 1996).
Also compliance improves a company’s reputation, which should be a very potent
ingredient for winning and maintaining contracts. Companies participating in CMM
are looking at meeting their software quality goals, meeting their requirements,
building a maintainable product, and seeking better and improved quality as well as
stabilizing schedule, meeting commitments, and accelerating or reducing schedule.
Several software companies have experienced a reduction in defects that ranged from
as low as 10 per cent to as high as 80 per cent. One organisation reported a 45 per cent
decrease in its reduction error rate, while two more companies’ product error rates
decreased from 2.0 to 0.11 per thousand source lines of code and from 0.72 to 0.13 per
thousand non-commented source statements (Brodman and Johnson, 1996).

TQM
19,4

324



ISO 9001 CMM relationship CMM judgemental relationship

Management Commitment to perform Ability to perform
responsibility Software project planning Verifying implementation

Software project tracking Software quality management
Software quality assurance

Quality system Verifying implementation software
project planning

Organisation process definitions

Software quality assurance
Software product engineering

Contract review Requirements management Software subcontract
Software project planning management

Design control Software project planning Software quality management
Software project tracking
Software configuration management
Software product engineering

Document control Software configuration management
Purchasing Software subcontract management
Control of
consumer-supplied
product

Software subcontract
management

Product identification Software configuration management
and tractability Software product engineering
Process control Software project planning Quantitative process management

Software quality assurance Technology change management
Software quality engineering

Inspection and testing Software product engineering
Peer reviews

Control of inspection
measuring, and test
equipment

Software product engineering

Inspection and test
status

Software product engineering

Control of Software configuration management
non-conforming product Software product engineering
Corrective and Software quality assurance Defect prevention
preventive actions Software configuration management
Handling, storage,
packaging,
preservation, and
delivery

Software configuration
management and software
product engineering

Control of quality Software configuration management
records Software product engineering

Peer reviews
Internal quality audits Verifying implementation

Software quality assurance
Training Ability to perform training programme
Servicing
Statistical techniques Measuring and analysis Organisation process definition;

quantitative process management;
software quality management

Table V.
Summary of mapping
between ISO 9001 and

CMM

A quality
management

perspective

325



Notes

1. International Organisation for Standardisation: Published Standard 1988.

2. Software Quality Characteristics and Metrics.

3. Structured Systems Analysis Design Method.

4. Ergonomic requirements for office work with visual display terminals (VDTs) Part 11:
Guidance on usability.

References

Barker, J. (1992), Future Edge: Discovering the Paradigms of Success, William Morrow and
Company Inc., New York, NY.

Bevan, N. (1997), Quality and Usability: A New Framework, Tutein-Nolthenius, Delft.

Brodman, J. and Johnson, D. (1996), “Return on investment from software process improvement
as measured by US industry”, Cross-Talk, April, pp. 23-9.

Budlong, F. and Peterson, J. (1996), “Software metrics, capability evaluation methodology and
implementation”, Cross-Talk, January, pp. 15-19.

Crosby, P.B. (1979), Quality Is Free, McGraw-Hill Publishing Company, New York, NY.

Fenton, N. (1991), Software Metrics: A Rigorous Approach, Chapman & Hall Publishing, London.

Flood, R.L. (1993), Beyond TQM, John Wiley & Sons, London.

Gentleman, W. (1996), “The quality of numerical software: assessment and enhancement”,
in Boisvert, R. (Ed.), The Proceedings of IFIP WG2.5 Working Conference 7, Oxford, 7-12
July, pp. 32-43.

Gillies, A. (1996), Case Studies in Software Engineering, SUBSL.

ISO 9000-9003 (1997), Guidelines for the Application of ISO 9001:1994 to the Development,
Supply, Installation and Maintenance of Computer Software, 2nd ed., 15 December.

Juran, J. (1988), The Quality Control Handbook, 4th ed., McGraw-Hill, New York, NY.

Khoshgoftaar, T.M. and Seliya, N. (2002), “Tree-based software quality estimation models for
fault prediction”, Proceedings of the 8th IEEE Symposium on Software Metrics (METRICS
2002), Ottawa, June 4-7, pp. 203-15.

Kontonya, G. and Sommerville, I. (1998), Requirements Engineering, Process and Techniques,
John Wiley & Sons, New York, NY.

McManus, J. (1999a), “Climbing the maturity ladder part I”, Project Manager Today, March,
pp. 30-1.

McManus, J. (1999b), “Climbing the maturity ladder part II”, Project Manager Today, April,
pp. 4-5.

McManus, J. (2000), “Quality meets process improvement”, Management Services Journal, No. 5,
pp. 14-16.

McManus, J. (2004), Risk Management in Software Development Projects, Elsevier,
Butterworth-Heinemann, Oxford.

Paulk, M. (1993), Capability Maturity Model, Version 1.1, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA.

Rangarajan, K., Swaminathan, N., Hedge, V. and Jacob, J. (2001), “Product quality framework:
a vehicle for focusing on product quality goals”, Software Engineering Notes, Vol. 26 No. 4,
pp. 77-82.

TQM
19,4

326



Sanders, J. and Curran, E. (1994), Software Quality: A Framework for Success in Software
Development and Support, Addison-Wesley, Reading, MA.

Shelley, C.C. (1994), “Practical experience of implementing software measurement programmes
in industry”, Software Quality Management, pp. 95-106.

TickIT (1992), A Guide to Software Quality Management System Construction and Certification
using EN29001 (ISO 9001), Issue 2.0, 28 February, UK Department of Trade and
Industry, London.

Watts, R. (1987), Measuring Software Quality, NCC, Blackwell, Oxford.

Corresponding author
John McManus can be contacted at: jmcmanus@lincoln.ac.uk

A quality
management

perspective

327

To purchase reprints of this article please e-mail: reprints@emeraldinsight.com
Or visit our web site for further details: www.emeraldinsight.com/reprints



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


